A088415 Primes p = prime(i) such that p(i)# - p(i+1) or p(i)# + p(i+1) or both are primes.
2, 3, 5, 7, 11, 13, 17, 19, 43, 53, 59, 73, 79, 83, 89, 149, 367, 431, 853, 4007, 6143, 8819, 8969
Offset: 1
Examples
3=p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
Links
- Dario Alejandro Alpern, Factorization using the Elliptic Curve Method.
- Hisanori Mishima, PI Pn + NextPrime (n = 1 to 100).
- Hisanori Mishima, PI Pn - NextPrime (n = 1 to 100).
Crossrefs
Cf. A087714.
Programs
-
Mathematica
Do[ p = Product[Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p - q] || PrimeQ[p + q], Print[ Prime[n]]], {n, 1, 1435}]
Extensions
Edited by Robert G. Wilson v, Oct 17 2003