A088416 A088415 indexed by A000040.
1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 17, 21, 22, 23, 24, 35, 73, 83, 147, 553, 801, 1098, 1115
Offset: 1
Formula
Extensions
Offset changed to 1 and a(20)-a(23) from Jinyuan Wang, Aug 06 2021
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
3 = p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
Do[p = Product[ Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p - q], Print[ Prime[n]]], {n, 1, 1435}] Module[{nn=1120,pr1,pr2,prmrl},pr1=Prime[Range[nn]];pr2=Prime[Range[ 2, nn+1]]; prmrl=FoldList[Times,pr1];Transpose[Select[Thread[{pr1,pr2, prmrl}], PrimeQ[#[[3]]-#[[2]]]&]][[1]]] (* Harvey P. Dale, Dec 07 2015 *) n=1;Monitor[Parallelize[While[True,If[PrimeQ[Product[Prime[k],{k,1,n}]-Prime[n + 1]],Print[Prime[n]]];n++];n],n] (* J.W.L. (Jan) Eerland, Dec 19 2022 *)
3 = p(2) is in the sequence because p(2)# + p(3) = 11 is prime.
Do[p = Product[ Prime[i], {i, 1, n}]; q = Prime[n + 1]; If[ PrimeQ[p + q], Print[ Prime[n]]], {n, 1, 1435}] With[{nn=1000},NextPrime[#,-1]&/@(Select[Thread[{FoldList[ Times,Prime[ Range[nn]]],Prime[Range[ 2,nn+1]]}], PrimeQ[ Total[#]]&][[All,2]])] (* Harvey P. Dale, Oct 07 2018 *)
Comments