A088459 Triangle read by rows: T(n,k) represents the number of lozenge tilings of an (n,1,n)-hexagon which include the non-vertical tile above the main diagonal starting in position k+1.
1, 1, 1, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 18, 18, 12, 4, 1, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1, 1, 7, 42, 126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1, 1, 8, 56, 196, 588, 1176, 1960, 2450, 2450, 1960, 1176, 588, 196, 56, 8, 1
Offset: 1
Examples
For example, the number of tilings of a 4,1,4 hexagon which includes the non-vertical tile above the main diagonal starting in position 3 is T(4,2)=12. Triangle T(n, k) begins: [1] 1,1, [2] 1,2, 2, 1, [3] 1,3, 6, 6, 3, 1, [4] 1,4,12, 18, 18, 12, 4, 1, [5] 1,5,20, 40, 60, 60, 40, 20, 5, 1, [6] 1,6,30, 75, 150, 200, 200, 150, 75, 30, 6, 1, [7] 1,7,42,126, 315, 525, 700, 700, 525, 315, 126, 42, 7, 1, [8] 1,8,56,196, 588,1176,1960,2450,2450,1960,1176,588, 196, 56, 8, 1, [9] 1,9,72,288,1008,2352,4704,7056,8820,8820,7056,4704,2352,1008,288,72,9,1
Crossrefs
Programs
-
Maple
A088459 := proc(n,k) binomial(n,ceil(k/2))*binomial(n-1,floor(k/2)) ; end proc: seq(seq(A088459(n,k),k=0..2*n-1),n=1..10) ; # R. J. Mathar, Apr 02 2017
-
Mathematica
Table[Binomial[n, Ceiling[k/2]] Binomial[n - 1, Floor[k/2]], {n, 10}, {k, 0, 2 n - 1}] // Flatten (* Eric W. Weisstein, Mar 23 2018 *)
Formula
T(n, k) = binomial(n, ceiling(k/2))* binomial(n-1, floor(k/2)), n>0 and k=0 to 2n-1.
Extensions
Edited and extended by Ray Chandler, Nov 17 2003
Comments