cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088462 a(1)=1, a(n) = ceiling((n - a(a(n-1)))/2).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 30, 30, 30, 31, 31, 32, 32
Offset: 1

Views

Author

Benoit Cloitre, Nov 12 2003

Keywords

Comments

Partial sums of A004641. - Reinhard Zumkeller, Dec 05 2009
This sequence generates A004641; see comment at A004641. - Clark Kimberling, May 25 2011

Crossrefs

Cf. A005206.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021

Programs

  • Magma
    [Floor((Sqrt(2)-1)*n+1/Sqrt(2)): n in [1..100]]; // Vincenzo Librandi, Jun 26 2017
  • Mathematica
    Table[Floor[(Sqrt[2] - 1) n + 1 / Sqrt[2]], {n, 100}] (* Vincenzo Librandi, Jun 26 2017 *)
  • Python
    l=[0, 1, 1]
    for n in range(3, 101): l.append(n - l[n - 1] - l[l[n - 2]])
    print(l[1:]) # Indranil Ghosh, Jun 24 2017, after Altug Alkan
    

Formula

a(n) = floor((sqrt(2)-1)*n + 1/sqrt(2)).
a(1) = a(2) = 1; a(n) = n - a(n-1) - a(a(n-2)) for n > 2. - Altug Alkan, Jun 24 2017