cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088488 a(n) = Sum_{k=1..8} floor(A254876(n,k)/A254876(n-1,k)), where A254876(n,k) = n! / (Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m).

Original entry on oeis.org

8, 17, 22, 26, 40, 43, 49, 66, 65, 69, 87, 87, 68, 109, 108, 109, 137, 130, 130, 157, 153, 133, 180, 174, 171, 211, 196, 191, 227, 218, 186, 250, 240, 232, 280, 262, 253, 298, 285, 164, 319, 304, 292, 350, 327, 313, 367, 349, 292, 390, 371, 354, 426, 393, 375
Offset: 2

Views

Author

Roger L. Bagula, Nov 09 2003

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_, k_]=n!/Product[i, {i, n-Floor[2*n/3^k], n-Floor[n/3^k]}]
    f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}]
    at=Table[f[n], {n, 2, 200}]
  • PARI
    A088488(n) = sum(k=1,8,(A254876bi(n,k)\A254876bi(n-1,k)));
    A254876bi(n,k) = n! / prod(i=(n-((2*n)\(3^k))),(n-(n\(3^k))),i);
    for(n=2, 10000, write("b088488.txt", n, " ", A088488(n)));
    
  • Scheme
    (define (A088488 n) (add (lambda (k) (floor->exact (/ (A254876bi n k) (A254876bi (- n 1) k)))) 1 8))
    ;; The following function implements sum_{i=lowlim..uplim} intfun(i)
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k=1..8} floor(A254876(n,k)/A254876(n-1,k)), where A254876(n,k) = n! / (Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m).

Extensions

Edited by Antti Karttunen, Feb 09 2015