A088498 Numbers k such that k^2 + k - 1 and k^2 + k + 1 are twin primes and (k + 1)*(k + 1) + k + 1 - 1 and (k + 1)*(k + 1) + k + 1 + 1 are also twin primes.
2, 5, 20, 455, 1364, 2204, 2450, 2729, 8540, 18485, 32198, 32318, 32780, 45863, 61214, 72554, 72560, 82145, 83258, 86603, 91370, 95198, 125333, 149330, 176888, 182909, 185534, 210845, 225665, 226253, 288419, 343160, 350090, 403940, 411500
Offset: 1
Examples
20 is a term since 20^2 + 20 - 1 = 419, 419 and 421 are twin primes, 21^2 + 21 - 1 = 461, and 461 and 463 are also twin primes.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A088485.
Programs
-
Mathematica
Select[ Range[510397], PrimeQ[ #^2 + # - 1] && PrimeQ[ #^2 + # + 1] && PrimeQ[ #^2 + 3# + 1] && PrimeQ[ #^2 + 3# + 3] & ] Select[Range[412000],AllTrue[Flatten[{#^2+#+{1,-1},(#+1)(#+1)+#+{0,2}}], PrimeQ]&] (* Harvey P. Dale, Feb 12 2022 *)
Extensions
Corrected and extended by Ray Chandler and Robert G. Wilson v, Nov 12 2003