cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088512 Number of partitions of n into two parts whose xor-sum is n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 3, 0, 1, 1, 3, 1, 3, 3, 7, 0, 1, 1, 3, 1, 3, 3, 7, 1, 3, 3, 7, 3, 7, 7, 15, 0, 1, 1, 3, 1, 3, 3, 7, 1, 3, 3, 7, 3, 7, 7, 15, 1, 3, 3, 7, 3, 7, 7, 15, 3, 7, 7, 15, 7, 15, 15, 31, 0, 1, 1, 3, 1, 3, 3, 7, 1, 3, 3, 7, 3, 7, 7, 15, 1, 3, 3, 7
Offset: 0

Views

Author

Naohiro Nomoto, Nov 14 2003

Keywords

Examples

			G.f. = x^3 + x^5 + x^6 + 3*x^7 + x^9 + x^10 + 3*x^11 + x^12 + 3*x^13 + 3*x^14 + ...
From _Emmanuele Villa_, Nov 19 2016: (Start)
For n = 47, the highest power of 2 less than n is 32, so a(47) = A001316(47-32) - 1 = A001316(15) - 1 = 16 - 1 = 15.
For n = 63, the highest power of 2 less than n is 32, so a(63) = A001316(63-32) - 1 = A001316(31) - 1 = 32 - 1 = 31. (End)
		

Crossrefs

Cf. A050315.

Programs

  • Mathematica
    Table[2^DigitCount[# - 2^(Floor@ Log2@ # - Boole@ IntegerQ@ Log2@ #) - 1 + Boole[# == 1]/2, 2, 1] - 1 &[n + 1], {n, 0, 72}] (* Michael De Vlieger, Nov 18 2016 *)
    a[ n_] := Which[ n < 3, 0, EvenQ[n], a @ Quotient[n, 2], True, a[ Quotient[n, 2]] 2 + 1]; (* Michael Somos, Dec 04 2016 *)
  • PARI
    a(n) = sum(m=1, n\2, bitxor(m,n-m)==n); \\ Michel Marcus, Dec 03 2016
    
  • PARI
    {a(n) = if( n<3, 0, n%2, a(n\2)*2 + 1, a(n\2))}; /* Michael Somos, Dec 04 2016 */

Formula

a(0) = 0, a(n) = A001316(n-m)-1, where m is the highest power of 2 less than n. - Emmanuele Villa, Nov 19 2016
a(2*n) = a(n), a(2*n + 1) = 2*a(n) + 1. - Michael Somos, Dec 04 2016