cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088518 Symmetric secondary structures of RNA molecules with n nucleotides.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 9, 12, 21, 29, 50, 71, 121, 175, 296, 434, 730, 1082, 1812, 2709, 4521, 6807, 11328, 17157, 28485, 43359, 71844, 109830, 181674, 278769, 460443, 708840, 1169283, 1805291, 2974574, 4604363, 7578937, 11758552, 19337489, 30064037
Offset: 0

Views

Author

Emeric Deutsch, Nov 18 2003

Keywords

Comments

Diagonal sums of triangle in A088855. - Philippe Deléham, Jan 04 2009
Number of prime symmetric Dyck (n+2)-paths with no ascent of length 1. E.g., the a(3) = 2 5-paths are UUUUUDDDDD and UUUDDUUDDD. - David Scambler, Aug 27 2012
a(n) is the number of 3412-avoiding involutions on [n] with no transpositions of the form (i,i+1) that are invariant under the reverse complement map. For example, a(5)=4 counts the involutions 12345, 14325, 52341, 54321. - Juan B. Gil, May 23 2020

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          `if`(n=0, 1, b(n-1)+ add(b(k)*b(n-2-k), k=1..n-2))
        end:
    a:= proc(n) option remember; `if`(n<2, 1,
          a(n-1) +a(n-2) +`if`(irem(n, 2, 'r')=0, -b(r-1), 0))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 27 2012
  • Mathematica
    CoefficientList[Series[(1 - 3*x^2 + x^4 - Sqrt[1 - 2*x^2 - x^4 - 2*x^6 + x^8])/(2*x^2*(-1 + x + x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
    b[n_] := b[n] = If[n==0, 1, b[n-1] + Sum[b[k]*b[n-2-k], {k, 1, n-2}]]; a[n_] := a[n] = If[n<2, 1, a[n-1] + a[n-2] + If[{q, r} = QuotientRemainder[n, 2 ]; r==0, -b[q-1], 0]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: H(z) satisfies z^2*(1-z-z^2)*H^2 + (1-z-z^2)*(1+z-z^2)*H - (1+z-z^2) = 0. H = (1/(1-z-z^2))*C(-z^2/(1-3z^2+z^4)), where C(z) = (1-sqrt(1-4z))/(2z) is the Catalan function. a(0)=a(1)=1; a(2n) = a(2n-1) + a(2n-2) - A004148(n-1) for n > 0; a(2n+1) = a(2n) + a(2n-1) for n > 0.
a(n) = F(n) - Sum_{i=1..floor(n/2)-1} A004148(i)*F(n-1-2i), where F(i)=A000045(i) are the Fibonacci numbers. - Emeric Deutsch, Nov 19 2003
a(n) is asymptotic to c*phi^n/sqrt(n) where phi=(1+sqrt(5))/2 and c=0.86.... - Benoit Cloitre, Nov 19 2003
In closed form, c = sqrt(1+3/sqrt(5)) / sqrt(Pi) = 0.863346635039540133... - Vaclav Kotesovec, Mar 21 2014
D-finite with recurrence (n+2)*a(n) -a(n-1) +(-2*n-1)*a(n-2) -2*a(n-3) +(-n+3)*a(n-4) -2a(n-5) +(-2*n+13)*a(n-6) -a(n-7) +(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022