A088541 Decimal expansion of sqrt(Pi)/(2K)*exp(-gamma/2) where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant.
8, 6, 8, 9, 2, 7, 7, 6, 8, 2, 3, 4, 3, 2, 3, 8, 2, 9, 9, 0, 9, 1, 5, 2, 7, 7, 9, 1, 0, 4, 6, 5, 2, 9, 1, 2, 2, 9, 3, 9, 4, 1, 2, 8, 7, 6, 2, 2, 7, 4, 9, 2, 1, 7, 7, 4, 9, 1, 0, 1, 1, 6, 0, 2, 6, 9, 5, 4, 1, 9, 6, 6, 3, 5, 7, 4, 9, 8, 1, 2, 3, 7, 9, 7, 7, 3, 2, 5, 3, 6, 8, 6, 4, 1, 8, 0, 6, 3, 1, 7, 7, 2, 2, 4
Offset: 0
Examples
0.868927768234323...
References
- S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100.
Links
- Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 6.
- S. Uchiyama, On some products involving primes, Proc. Amer. Math. Soc. 28 (1971) 629-630; MR 43#3227.
Programs
-
Mathematica
digits = 104; LandauRamanujanK = 1/Sqrt[2]*NProduct[ ((1-2^(-2^n)) * Zeta[2^n] / DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5]; Sqrt[Pi]/(2*LandauRamanujanK )*Exp[-EulerGamma/2] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013, updated Mar 14 2018 *)
Formula
Equals sqrt(Pi)/(2K)*exp(-gamma/2) = lim x-->oo prod(1-1/p) where p runs through the primes p==3 mod 4 and p<=x.
Comments