cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088541 Decimal expansion of sqrt(Pi)/(2K)*exp(-gamma/2) where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant.

Original entry on oeis.org

8, 6, 8, 9, 2, 7, 7, 6, 8, 2, 3, 4, 3, 2, 3, 8, 2, 9, 9, 0, 9, 1, 5, 2, 7, 7, 9, 1, 0, 4, 6, 5, 2, 9, 1, 2, 2, 9, 3, 9, 4, 1, 2, 8, 7, 6, 2, 2, 7, 4, 9, 2, 1, 7, 7, 4, 9, 1, 0, 1, 1, 6, 0, 2, 6, 9, 5, 4, 1, 9, 6, 6, 3, 5, 7, 4, 9, 8, 1, 2, 3, 7, 9, 7, 7, 3, 2, 5, 3, 6, 8, 6, 4, 1, 8, 0, 6, 3, 1, 7, 7, 2, 2, 4
Offset: 0

Views

Author

Benoit Cloitre, Nov 16 2003

Keywords

Comments

An illustration of the Chebyshev effect.

Examples

			0.868927768234323...
		

References

  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100.

Crossrefs

Programs

  • Mathematica
    digits = 104; LandauRamanujanK = 1/Sqrt[2]*NProduct[ ((1-2^(-2^n)) * Zeta[2^n] / DirichletBeta[2^n])^(1/2^(n+1)), {n, 1, 24}, WorkingPrecision -> digits+5]; Sqrt[Pi]/(2*LandauRamanujanK )*Exp[-EulerGamma/2] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Mar 04 2013, updated Mar 14 2018 *)

Formula

Equals sqrt(Pi)/(2K)*exp(-gamma/2) = lim x-->oo prod(1-1/p) where p runs through the primes p==3 mod 4 and p<=x.
Equals A002161*A064533/(2*exp(A155739)). - Michel Marcus, Jun 19 2020