cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088548 Primes of the form k^4 + k^3 + k^2 + k + 1.

Original entry on oeis.org

5, 31, 2801, 22621, 30941, 88741, 245411, 292561, 346201, 637421, 732541, 837931, 2625641, 3500201, 3835261, 6377551, 15018571, 16007041, 21700501, 28792661, 30397351, 35615581, 39449441, 48037081, 52822061, 78914411, 97039801, 147753211, 189004141, 195534851
Offset: 1

Views

Author

Cino Hilliard, Nov 17 2003

Keywords

Comments

These numbers when >= 31 are primes repunits 11111_n in a base n >= 2, so except 5, they are all Brazilian primes belonging to A085104. (See Links "Les nombres brésiliens", § V.4 - § V.5.) A008858 is generated by the bases n present in A049409. - Bernard Schott, Dec 19 2012

Examples

			a(2) = 31 is prime and 31 = 2^4 + 2^3 + 2^2 + 2 + 1.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is n^4+n^3+n^2+n+1]; // Vincenzo Librandi, Jul 16 2012
    
  • Mathematica
    lst={}; Do[a=1+n+n^2+n^3+n^4; If[PrimeQ[a], AppendTo[lst,a]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 02 2009 *)
    Select[Table[n^4+n^3+n^2+n+1, {n,0,2000}], PrimeQ] (* Vincenzo Librandi, Jul 16 2012 *)
  • PARI
    polypn(n,p) = { for(x=1,n, if(p%2,y=2,y=1); for(m=1,p, y=y+x^m; ); if(isprime(y),print1(y",")); ) }
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, (k**4+k**3+k**2+k+1 for k in range(120))))) # Michael S. Branicky, May 31 2021

Formula

A000040 intersect A053699. - R. J. Mathar, Feb 07 2014