A088548 Primes of the form k^4 + k^3 + k^2 + k + 1.
5, 31, 2801, 22621, 30941, 88741, 245411, 292561, 346201, 637421, 732541, 837931, 2625641, 3500201, 3835261, 6377551, 15018571, 16007041, 21700501, 28792661, 30397351, 35615581, 39449441, 48037081, 52822061, 78914411, 97039801, 147753211, 189004141, 195534851
Offset: 1
Examples
a(2) = 31 is prime and 31 = 2^4 + 2^3 + 2^2 + 2 + 1.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
Programs
-
Magma
[a: n in [0..200] | IsPrime(a) where a is n^4+n^3+n^2+n+1]; // Vincenzo Librandi, Jul 16 2012
-
Mathematica
lst={}; Do[a=1+n+n^2+n^3+n^4; If[PrimeQ[a], AppendTo[lst,a]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 02 2009 *) Select[Table[n^4+n^3+n^2+n+1, {n,0,2000}], PrimeQ] (* Vincenzo Librandi, Jul 16 2012 *)
-
PARI
polypn(n,p) = { for(x=1,n, if(p%2,y=2,y=1); for(m=1,p, y=y+x^m; ); if(isprime(y),print1(y",")); ) }
-
Python
from sympy import isprime print(list(filter(isprime, (k**4+k**3+k**2+k+1 for k in range(120))))) # Michael S. Branicky, May 31 2021
Comments