cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A085104 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1.

Original entry on oeis.org

7, 13, 31, 43, 73, 127, 157, 211, 241, 307, 421, 463, 601, 757, 1093, 1123, 1483, 1723, 2551, 2801, 2971, 3307, 3541, 3907, 4423, 4831, 5113, 5701, 6007, 6163, 6481, 8011, 8191, 9901, 10303, 11131, 12211, 12433, 13807, 14281, 17293, 19183, 19531, 20023
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 03 2003

Keywords

Comments

Primes that are base-b repunits with three or more digits for at least one b >= 2: Primes in A053696. Subsequence of A000668 U A076481 U A086122 U A165210 U A102170 U A004022 U ... (for each possible b). - Rick L. Shepherd, Sep 07 2009
From Bernard Schott, Dec 18 2012: (Start)
Also known as Brazilian primes. The primes that are not Brazilian primes are in A220627.
The number of terms k+1 is always an odd prime, but this is not enough to guarantee a prime, for example 111 = 1 + 10 + 100 = 3*37.
The inverses of the Brazilian primes form a convergent series; the sum is slightly larger than 0.33 (see Theorem 4 of Quadrature article in the Links). (End)
It is not known whether there are infinitely many Brazilian primes. See A002383. - Bernard Schott, Jan 11 2013
Primes of the form (n^p - 1)/(n - 1), where p is odd prime and n > 1. - Thomas Ordowski, Apr 25 2013
Number of terms less than 10^n: 1, 5, 14, 34, 83, 205, 542, 1445, 3880, 10831, 30699, 88285, ..., . - Robert G. Wilson v, Mar 31 2014
From Bernard Schott, Apr 08 2017: (Start)
Brazilian primes fall into two classes:
1) when n is prime, we get sequence A023195 except 3 which is not Brazilian,
2) when n is composite, we get sequence A285017. (End)
The conjecture proposed in Quadrature "No Sophie Germain prime is Brazilian (prime)" (see link Bernard Schott, Quadrature, Conjecture 1, page 36) is false. Thanks to Giovanni Resta, who found that a(856) = 28792661 = 1 + 73 + 73^2 + 73^3 + 73^4 = (11111)73 is the 141385th Sophie Germain prime. - _Bernard Schott, Mar 08 2019

Examples

			13 is a term since it is prime and 13 = 1 + 3 + 3^2 = 111_3.
31 is a term since it is prime and 31 = 1 + 2 + 2^2 + 2^3 + 2^4 = 11111_2.
From _Hartmut F. W. Hoft_, May 08 2017: (Start)
The sequence represented as a sparse matrix with the k-th column indexed by A006093(k+1), primes minus 1, and row n by A000027(n+1). Traversing the matrix by counterdiagonals produces a non-monotone ordering.
    2    4      6        10             12          16
2  7    31     127      -              8191        131071
3  13   -      1093     -              797161      -
4  -    -      -        -              -           -
5  31   -      19531    12207031       305175781   -
6  43   -      55987    -              -           -
7  -    2801   -        -              16148168401 -
8  73   -      -        -              -           -
9  -    -      -        -              -           -
10  -    -      -        -              -           -
11  -    -      -        -              -           50544702849929377
12  157  22621  -        -              -           -
13  -    30941  5229043  -              -           -
14  211  -      8108731  -              -           -
15  241  -      -        -              -           -
16 -    -      -        -              -           -
17  307  88741  25646167 2141993519227  -           -
18  -    -      -        -              -           -
19  -    -      -        -              -           -
20  421  -      -        10778947368421 -           689852631578947368421
21  463  -      -        17513875027111 -           1502097124754084594737
22  -    245411 -        -              -           -
23  -    292561 -        -              -           -
24  601  346201 -        -              -           -
Except for the initial values in the respective sequences the rows and columns as labeled in the matrix are:
column  2:  A002383            row 2:  A000668
column  4:  A088548            row 3:  A076481
column  6:  A088550            row 4:  -
column 10:  A162861            row 5:  A086122.
(End)
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 174.

Crossrefs

Cf. A189891 (complement), A125134 (Brazilian numbers), A220627 (Primes that are non-Brazilian).
Cf. A003424 (n restricted to prime powers).
Equals A023195 \3 Union A285017 with empty intersection.
Primes of the form (b^k-1)/(b-1) for b=2: A000668, b=3: A076481, b=5: A086122, b=6: A165210, b=7: A102170, b=10: A004022.
Primes of the form (b^k-1)/(b-1) for k=3: A002383, k=5: A088548, k=7: A088550, k=11: A162861.

Programs

  • Haskell
    a085104 n = a085104_list !! (n-1)
    a085104_list = filter ((> 1) . a088323) a000040_list
    -- Reinhard Zumkeller, Jan 22 2014
  • Mathematica
    max = 140; maxdata = (1 - max^3)/(1 - max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 - m^i)/(1 - m); cc <= maxdata, If[PrimeQ[cc], a = Append[a, cc]]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)
    f[n_] := Block[{i = 1, d, p = Prime@ n}, d = Rest@ Divisors[p - 1]; While[ id = IntegerDigits[p, d[[i]]]; id != Reverse@ id || Union@ id != {1}, i++]; d[[i]]]; Select[ Range[2, 60], 1 + f@# != Prime@# &] (* Robert G. Wilson v, Mar 31 2014 *)
  • PARI
    list(lim)=my(v=List(),t,k);for(n=2,sqrt(lim), t=1+n;k=1; while((t+=n^k++)<=lim,if(isprime(t), listput(v,t))));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Jan 08 2013
    
  • PARI
    A085104_vec(N,L=List())=forprime(K=3,logint(N+1,2),for(n=2,sqrtnint(N-1,K-1),isprime((n^K-1)\(n-1))&&listput(L,(n^K-1)\(n-1))));Set(L) \\ M. F. Hasler, Jun 26 2018
    

Formula

A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014

Extensions

More terms from David Wasserman, Jan 26 2005

A049409 Numbers n such that n^4 + n^3 + n^2 + n + 1 is prime.

Original entry on oeis.org

1, 2, 7, 12, 13, 17, 22, 23, 24, 28, 29, 30, 40, 43, 44, 50, 62, 63, 68, 73, 74, 77, 79, 83, 85, 94, 99, 110, 117, 118, 120, 122, 127, 129, 134, 143, 145, 154, 162, 164, 165, 172, 175, 177, 193, 198, 204, 208, 222, 227, 239, 249, 254, 255, 260
Offset: 1

Views

Author

Keywords

Comments

There is no square > 1 in this sequence, because if f(n) = n^4 + n^3 + n^2 + n + 1, then f(n^2) = f(n)*f(-n). Actually, f(x) divides f(x^m) for all m not in 5Z. So the only perfect powers in this sequence can be 5th, 25th, 125th... powers. The least perfect power > 1 in this sequence is 22^5. - M. F. Hasler, Feb 09 2012
The corresponding prime numbers n^4 + n^3 + n^2 + n + 1 are in A088548. - Bernard Schott, Dec 19 2012
This is also the list of bases where 11111 is a prime number. - Christian N. K. Anderson, Mar 28 2013

Crossrefs

Cf. A088548.

Programs

A190527 Primes of the form p^4 + p^3 + p^2 + p + 1, where p is prime.

Original entry on oeis.org

31, 2801, 30941, 88741, 292561, 732541, 3500201, 28792661, 39449441, 48037081, 262209281, 1394714501, 2666986681, 3276517921, 4802611441, 5908670381, 12936304421, 16656709681, 19408913261, 24903325661, 37226181521, 43713558101, 52753304641, 64141071121, 96427561501, 100648118041
Offset: 1

Views

Author

Bernard Schott, Dec 20 2012

Keywords

Comments

These primes are generated by exactly A065509, cf. 2nd formula.
These numbers are repunit primes 11111_p, so they are Brazilian primes (A085104).
When p^4 + p^3 + p^2 + p + 1 = sigma(p^4) is prime, then it equals A193574(p^4), so that this sequence is a subsequence of A193574; by definition it is also a subsequence of A053699 and A131992. - Hartmut F. W. Hoft, May 05 2017

Examples

			a(3) = 30941 = 11111_13 = 13^4 + 13^3 + 13^2 + 13^1 + 1 is prime.
		

Crossrefs

Cf. A049409 (n^4 + ... + 1 is prime), A065509 (primes among these n), A193574.
Subsequence of A088548 (primes n^4 + ... + 1) and A085104 ("Brazilian" primes, of the form 1 + n + n^2 + ... + n^k).
Intersection of A000040 (primes) and A131992 (p^4 + ... + 1), subsequence of A053699 (n^4 + ... + 1).

Programs

  • Magma
    [p: p in PrimesUpTo(600) | IsPrime(p) where p is p^4 +p^3+p^2+p+1]; // Vincenzo Librandi, May 06 2017
    
  • Mathematica
    a190527[n_] := Select[Map[(Prime[#]^5-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
    a190527[100] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[#^4 + #^3 + #^2 + # + 1 &/@Prime[Range[100]], PrimeQ] (* Vincenzo Librandi, May 06 2017 *)
  • PARI
    [q|p<-primes(100),ispseudoprime(q=(p^5-1)\(p-1))]
    A190527_vec(N)=[(p^5-1)\(p-1)|p<-A065509_vec(N)] \\ M. F. Hasler, Mar 03 2020

Formula

a(n) = A193574(A065509(n)^4). - Hartmut F. W. Hoft, May 08 2017
a(n) = A053699(A065509(n)) = A000203(A065509(n)^4). - M. F. Hasler, Mar 03 2020

Extensions

a(7) corrected and a(18)-a(26) added by Hartmut F. W. Hoft, May 05 2017
Edited by M. F. Hasler, Mar 06 2020

A285017 Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1 where n is not prime.

Original entry on oeis.org

43, 73, 157, 211, 241, 421, 463, 601, 757, 1123, 1483, 2551, 2971, 3307, 3907, 4423, 4831, 5701, 6007, 6163, 6481, 8191, 9901, 11131, 12211, 12433, 13807, 14281, 19183, 20023, 20593, 21757, 22621, 22651, 23563, 24181, 26083, 26407, 27061, 28393, 31153, 35533
Offset: 1

Views

Author

Bernard Schott, Apr 08 2017

Keywords

Comments

These numbers are Brazilian primes belonging to A085104.
Brazilian primes with n prime are A023195, except 3 which is not Brazilian.
A085104 = This sequence Union { A023195 \ number 3 }.
k + 1 is necessarily prime, but that's not sufficient: 1 + 10 + 100 = 111.
Most of these terms come from A185632 which are prime numbers 111_n with n no prime, the first other term is 22621 = 11111_12, the next one is 245411 = 11111_22.
Number of terms < 10^k: 0, 2, 9, 23, 64, 171, 477, 1310, 3573, 10098, ..., . - Robert G. Wilson v, Apr 15 2017

Examples

			157 = 12^2 + 12 + 1 = 111_12 is prime and 12 is composite.
		

Crossrefs

Programs

  • Maple
    N:= 40000: # to get all terms <= N
    res:= NULL:
    for k from 2 to ilog2(N) do if isprime(k) then
      for n from 2 do
        p:= (n^(k+1)-1)/(n-1);
        if p > N then break fi;
        if isprime(p) and not isprime(n) then res:= res, p fi
    od fi od:
    res:= {res}:
    sort(convert(res,list)); # Robert Israel, Apr 14 2017
  • Mathematica
    mx = 36000; g[n_] := Select[Drop[Accumulate@Table[n^ex, {ex, 0, Log[n, mx]}], 2], PrimeQ]; k = 1; lst = {}; While[k < Sqrt@mx, If[CompositeQ@k, AppendTo[lst, g@k]; lst = Sort@Flatten@lst]; k++]; lst (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    isok(n) = {if (isprime(n), forcomposite(b=2, n, d = digits(n, b); if ((#d > 2) && (vecmin(d) == 1) && (vecmax(d)== 1), return(1)););); return(0);} \\ Michel Marcus, Apr 09 2017
    
  • PARI
    A285017_vec(n)={my(h=vector(n,i,1),y,c,z=4,L:list);L=List();forprime(x=3,,forcomposite(m=z,x-1,y=digits(x,m);if((y==h[1..#y])&&2<#y,listput(L,x);z=m;if(c++==n,return(Vec(L))))))} \\ R. J. Cano, Apr 18 2017

A193366 Primes of the form n^4 + n^3 + n^2 + n + 1 where n is nonprime.

Original entry on oeis.org

5, 22621, 245411, 346201, 637421, 837931, 2625641, 3835261, 6377551, 15018571, 16007041, 21700501, 30397351, 35615581, 52822061, 78914411, 97039801, 147753211, 189004141, 195534851, 209102521, 223364311, 279086341, 324842131, 421106401, 445120421, 566124791, 693025471, 727832821, 745720141, 880331261, 943280801, 987082981, 1544755411, 1740422941
Offset: 1

Views

Author

Jonathan Vos Post, Dec 20 2012

Keywords

Comments

Note that there are no primes of the form n^3 + n^2 + n + 1 = (n+1)*(n^2+1) as irreducible components over Z.
From Bernard Schott, May 15 2017: (Start)
These are the primes associated with A286094.
A088548 = A190527 Union {This sequence}.
All the numbers of this sequence n^4 + n^3 + n^2 + n + 1 = 11111_n with n > 1 are Brazilian numbers, so belong to A125134 and A085104. (End)

Examples

			a(1) = 1^4 + 1^3 + 1^2 + 1 + 1 = 5.
a(2) = 12^4 + 12^3 + 12^2 + 12 + 1 = 22621.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 150 do p(n):= 1+n+n^2+n^3+n^4;
    if tau(n)>2 and isprime(p(n)) then print(n,p(n)) else fi od: # Bernard Schott, May 15 2017
  • Mathematica
    Select[Map[Total[#^Range[0, 4]] &, Select[Range@ 204, ! PrimeQ@ # &]], PrimeQ] (* Michael De Vlieger, May 15 2017 *)
  • PARI
    print1(5);forcomposite(n=4,1e3,if(isprime(t=n^4+n^3+n^2+n+1),print1(", "t))) \\ Charles R Greathouse IV, Mar 25 2013

Formula

{n^4 + n^3 + n^2 + n + 1 where n is in A018252}.

A194194 Primes of the form n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 where n is nonprime.

Original entry on oeis.org

7, 55987, 8108731, 321272407, 3092313043, 4201025641, 9684836827, 31401724537, 47446779661, 83925549247, 100343116693, 141276239497, 265462278481, 438668366137, 654022685443, 742912017121, 2333350772341, 3324554405047, 4033516174507, 4432676798593, 9752186278927, 14505760086637, 15656690128843, 16882733081761
Offset: 1

Views

Author

Jonathan Vos Post, Dec 20 2012

Keywords

Comments

Subset of A088550. The n in A018252 for which n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 are prime begin 1, 6, 14, 26, 38, 40.

Examples

			a(1) = 1^6 + 1^5 + 1^4 + 1^3 + 1^2 + 1 + 1 = 7.
a(2) = 6^6 + 6^5 + 6^4 + 6^3 + 6^2 + 6 + 1 = 55987.
a(3) = 14^6 + 14^5 + 14^4 + 14^3 + 14^2 + 14 + 1 = 8108731.
a(4) = 26^6 + 26^5 + 26^4 + 26^3 + 26^2 + 26 + 1 = 321272407.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=200},Select[Total[#^Range[0,6]]&/@Complement[Range[nn], Prime[ Range[PrimePi[nn]]]],PrimeQ]] (* Harvey P. Dale, Nov 15 2013 *)

A286094 Nonprime numbers n such that n^4 + n^3 + n^2 + n + 1 is prime.

Original entry on oeis.org

1, 12, 22, 24, 28, 30, 40, 44, 50, 62, 63, 68, 74, 77, 85, 94, 99, 110, 117, 118, 120, 122, 129, 134, 143, 145, 154, 162, 164, 165, 172, 175
Offset: 1

Views

Author

Bernard Schott, May 02 2017

Keywords

Comments

A065509 Union {this sequence} = A049409.
The corresponding prime numbers n^4 + n^3 + n^2 + n + 1 = 11111_n are in A193366; these Brazilian primes, except 5 which is not Brazilian, belong to A085104 and A285017.

Examples

			12 is in the sequence because 12^4 + 12^3 + 12^2 + 12 + 1 = 11111_12 = 22621, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 414, And[! PrimeQ@ #, PrimeQ[Total[#^Range[0, 4]]]] &] (* Michael De Vlieger, May 03 2017 *)
  • PARI
    isok(n)=if(n==1,5,if(ispseudoprime(n), 0, isprime(fromdigits([1, 1, 1, 1, 1], n))));
    getfirstterms(n)={my(L:list, c:small); L=List(); c=0; forstep(k=1, +oo, 1, if(isok(k), listput(L, k); if(c++==n, break))); return(Vec(L))} \\ R. J. Cano, May 09 2017

A182385 Primes of the form k^4 + k^3 + k^2 + k - 1.

Original entry on oeis.org

3, 29, 1553, 4679, 16103, 22619, 111149, 837929, 1082399, 2374319, 2896403, 3835259, 6377549, 16007039, 18129539, 23000459, 27252359, 30397349, 32068199, 37495769, 55344353, 75618299, 118121639, 132316199, 147753209, 230762759, 254063753, 386923739
Offset: 1

Views

Author

Alex Ratushnyak, Apr 27 2012

Keywords

Crossrefs

Cf. A088548.

Programs

  • Mathematica
    Select[Table[n^4 + n^3 + n^2 + n - 1, {n, 0, 300}], PrimeQ] (* T. D. Noe, Apr 27 2012 *)

A198244 Primes of the form k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 where k is nonprime.

Original entry on oeis.org

11, 10778947368421, 17513875027111, 610851724137931, 614910264406779661, 22390512687494871811, 22793803793211153712637, 79905927161140977116221, 184251916941751188170917, 319465039747605973452001, 1311848376806967295019263, 1918542715220370688851293
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2012

Keywords

Comments

Subsequence of A060885.
From Bernard Schott, Nov 01 2019: (Start)
These are the primes associated with the terms k of A308238.
A162861 = A286301 Union {this sequence}.
The numbers of this sequence R_11 = 11111111111_k with k > 1 are Brazilian primes, so belong to A085104. (End)

Examples

			10778947368421 is in the sequence since 10778947368421 = 20^10 + 20^9 + 20^8 + 20^7 + 20^6 + 20^5 + 20^4 + 20^3 + 20^2 + 20 + 1, 20 is not prime, and 10778947368421 is prime.
		

Crossrefs

Similar to A185632 (k^2+ ...), A193366 (k^4+ ...), A194194 (k^6+ ...).

Programs

  • Magma
    [a: n in [0..500] | not IsPrime(n) and IsPrime(a) where a is (n^10+n^9+n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1)]; // Vincenzo Librandi, Nov 09 2014
    
  • Maple
    f:= proc(n)
    local p,j;
    if isprime(n) then return NULL fi;
    p:= add(n^j,j=0..10);
    if isprime(p) then p else NULL fi
    end proc:
    map(f, [$1..1000]); # Robert Israel, Nov 19 2014
  • PARI
    forcomposite(n=0,10^3,my(t=sum(k=0,10,n^k));if(isprime(t),print1(t,", "))); \\ Joerg Arndt, Nov 10 2014
  • Python
    from sympy import isprime
    A198244_list, m = [], [3628800, -15966720, 28828800, -27442800, 14707440, -4379760, 665808, -42240, 682, 0, 1]
    for n in range(1,10**4):
        for i in range(10):
            m[i+1]+= m[i]
        if not isprime(n) and isprime(m[-1]):
            A198244_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
    

Formula

{A060885(A018252(n)) which are in A000040}.

Extensions

a(5)-a(6) from Robert G. Wilson v, Dec 21 2012
a(7) from Michael B. Porter, Dec 27 2012
Corrected terms a(6)-a(7) and added terms by Chai Wah Wu, Nov 09 2014

A188269 Prime numbers of the form k^4 + k^3 + 4*k^2 + 7*k + 5 = k^4 + (k+1)^3 + (k+2)^2.

Original entry on oeis.org

5, 59, 348077, 10023053, 30414227, 55367063, 72452489, 85856933, 109346759, 182679473, 254112143, 305966369, 433051637, 727914497, 2029672529, 4178961167, 6528621257, 8346080159, 12783893813, 17220494579, 17993776223, 19618171127, 23673478589, 29448235247, 43333033853
Offset: 1

Views

Author

Rafael Parra Machio, Jun 09 2011

Keywords

Comments

Bunyakovsky's conjecture implies that this sequence is infinite. - Charles R Greathouse IV, Jun 09 2011
All the terms in the sequence are congruent to 2 mod 3. - K. D. Bajpai, Apr 11 2014

Examples

			5 is prime and appears in the sequence because 0^4 + 1^3 + 2^2 = 5.
59 is prime and appears in the sequence because 2^4 + 3^3 + 4^2 = 59.
348077 = 24^4 + (24+1)^3 + (24+2)^2 = 24^4 + 25^3 + 26^2.
10023053 = 56^4 + (56+1)^3 + (56+2)^2 = 56^4 + 57^3 + 58^2.
		

Crossrefs

Programs

  • Maple
    select(isprime, [n^4+(n+1)^3+(n+2)^2$n=0..1000])[]; # K. D. Bajpai, Apr 11 2014
  • Mathematica
    lst={};Do[If[PrimeQ[p=n^4+n^3+4*n^2+7*n+5], AppendTo[lst, p]],{n,200}];lst
    Select[Table[n^4+n^3+4n^2+7n+5,{n,500}],PrimeQ] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=n^4+n^3+4*n^2+7*n+5),print1(k", "))) \\ Charles R Greathouse IV, Jun 09 2011

Extensions

Duplicate Mathematica program deleted by Harvey P. Dale, Jun 19 2011
Missing term 5 inserted by Alois P. Heinz, Sep 21 2024
Showing 1-10 of 13 results. Next