cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rafael Parra Machio

Rafael Parra Machio's wiki page.

Rafael Parra Machio has authored 13 sequences. Here are the ten most recent ones:

A225893 Numbers of the form p^2 * (p^2 + 1), where p = A224718.

Original entry on oeis.org

2450, 2827442, 3420650, 131091050, 607597850, 1387525250, 3262865762, 3969189002, 4362536450, 7370136650, 8882968250, 38513866250, 43618113650, 96254752250, 110842051970, 123657370850, 135755034050, 170940489050, 304758650450, 328385729450, 472300879322
Offset: 1

Author

Rafael Parra Machio, May 20 2013

Keywords

Comments

The sequence A224718 of Zak Seidov, about prime numbers p such that p^2+1 is not squarefree.

Crossrefs

Cf. A224718.

Programs

  • Mathematica
    p = Select[Prime[Range[250]], !SquareFreeQ[#^2+1]&]; p^2 * (p^2+1)

A225892 Numbers of the form p^2 * (p^2 + 1) where p is in A225856.

Original entry on oeis.org

20, 90, 650, 14762, 28730, 83810, 130682, 280370, 708122, 924482, 1875530, 4881890, 7893290, 12120842, 13849562, 20155610, 25416722, 28403570, 38956322, 47465210, 62750162, 88538690, 104070602, 112561490, 141170042, 163060130, 260160770, 294517082, 352294130
Offset: 1

Author

Rafael Parra Machio, May 20 2013

Keywords

Examples

			a(2) = 3^2(3^2+1) = 3^4+3^2 = 90.
a(5) = 13^2(13^2+1) = 13^4+13^2 = 28730.
		

Crossrefs

Cf. A071253, A225856 (primes p such that p^2+1 is squarefree).

Programs

  • Mathematica
    p = Select[Prime[Range[60]], SquareFreeQ[#^2+1]&]; p^2 * (p^2+1)
    #^2 (#^2+1)&/@Select[Prime[Range[50]],SquareFreeQ[#^2+1]&] (* Harvey P. Dale, Jun 17 2022 *)

Formula

a(n) = A071253(A225856(n)). - Amiram Eldar, Feb 23 2021

A225856 Primes p such that p^2 + 1 is squarefree.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 241, 263, 269, 271, 277, 281, 283, 311, 313, 317, 331, 337
Offset: 1

Author

Rafael Parra Machio, May 18 2013

Keywords

Comments

Primes of the sequence A224718 generating squarefree.

Examples

			23 is a term since 23^2+1 = 530 = 2*5*53, is squarefree.
43 is not a term since 43^2+1 = 1850 = 2*5^2*7, is not squarefree.
		

Crossrefs

Intersection of A000040 and A049533.
Cf. A224718.

Programs

  • Mathematica
    Select[Prime[Range[100]], SquareFreeQ[#^2+1]&]

A192228 Primes of the form (n+1)^6+(n+2)^6+(n+3)^6-666.

Original entry on oeis.org

425783, 263145359, 744158711, 1805712959, 32484102023, 103206118583, 271979814143, 324434645039, 454854785303, 626321908703, 6944429711711, 21648847849679, 23586002145119
Offset: 1

Author

Rafael Parra Machio, Jun 26 2011

Keywords

Comments

Sum of three consecutive numbers with exponent 6, the difference with 666 generate prime number of the form 3n^6 +36n^5 +210n^4 +720n^3 +1470n^2 +1656n +128.

Examples

			425783 = 6^6+7^6+8^6-666 and 744158711 = 24^6+25^6+26^6-666 are in the sequence.
		

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[p=(n+1)^6+(n+2)^6+(n+3)^6-666],AppendTo[lst,p]],{n,200}];lst
    Select[Total/@(Partition[Range[200],3,1]^6)-666,PrimeQ] (* Harvey P. Dale, Dec 14 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=(n+1)^6+(n+2)^6+(n+3)^6-666),print1(k", "))) \\ Charles R Greathouse IV, Jul 01 2011

A191683 Smallest representative squarefree composite n with prescribed number of prime factors and prescribed, prime arithmetic average of these factors.

Original entry on oeis.org

21, 33, 57, 69, 93, 105, 129, 177, 195, 213, 217, 237, 249, 265, 309, 393, 417, 445, 465, 483, 489, 565, 573, 597, 633, 645, 669, 753, 813, 865, 915, 933, 973, 987, 993, 1057, 1077, 1137, 1149, 1185, 1257, 1285, 1329, 1365, 1389, 1393, 1417, 1437, 1465, 1477, 1497, 1545, 1569, 1689, 1743, 1765, 1857, 1893, 1897, 1945, 1977
Offset: 1

Author

Rafael Parra Machio, Jun 11 2011

Keywords

Comments

A187073 contains numbers n = q_1*q_2*q_3*... *q_k with k distinct prime factors q subject to the condition that the arithmetic average (q_1+q_2+...+q_k)/k is some prime p.
This sequence here is a subsequence of A187073 and lists only the smallest n associated with the two parameters k and p. If a larger/later number in A187073 represents the same prime p with the same number k, it is not copied into this sequence here.

Examples

			195 and 231 are representatives of the prime average p=7 with k=3 primes in A187073. The smaller 195 is, but the larger 231 is not in this sequence here.
57 and 85 are representatives of p=11 with k=2 primes in A187073. Only the smaller 57 is in here.
93, 145 and 253 are representatives of p=17 with k=2 primes in A187073. Only the smallest representative 93 is in this sequence here.
		

References

  • Carlos Sánchez y Rita Roldán, Goldbach: Una Conjetura Indómita, Nivola, 2009, p. 105

Crossrefs

A191865 Primes of the form (n-1)^6 + n^5 + (n+1)^4.

Original entry on oeis.org

17, 563, 67559, 758677727, 5639788283, 12519315713, 228317617103, 2215267259747, 2458514680949, 5331791014853, 9754511753219, 11469661520567, 60568409162663, 64329745367417, 148696534573127, 164890314104507, 1843608625927967, 2182930574787737, 5990875533026939
Offset: 1

Author

Rafael Parra Machio, Jun 18 2011

Keywords

Comments

Sum of three consecutive numbers using exponents 6, 5, and 4 to generate prime numbers from n^6 - 5n^5 + 16n^4 - 16n^3 + 21n^2 - 2n + 2 = (n-1)^6 + n^5 + (n+1)^4.

Examples

			2^6 + 3^5 + 4^4 = 563 and 6^6 + 7^5 + 8^4 = 67559 are primes in the sequence.
		

Programs

  • Maple
    R:= NULL: count:= 0:
    for n from 1 by 2 while count < 100 do
       v:= (n-1)^6+n^5+(n+1)^4;
       if isprime(v) then count:= count+1; R:= R,v; fi
    od:
    R; # Robert Israel, Jan 05 2021
  • Mathematica
    lst={};Do[If[PrimeQ[p=(n-1)^6+n^5+(n+1)^4], AppendTo[lst, p]],{n,200}];lst
    lst={};Do[If[PrimeQ[p=n^6-5n^5+16n^4-16n^3+21n^2-2n+2], AppendTo[lst, p]],{n,200}];lst
  • PARI
    forstep(n=1,1e3,2,if(isprime(k=(n-1)^6+n^5+(n+1)^4),print1(k", "))) \\ Charles R Greathouse IV, Jun 19 2011

A191589 Primes of the form 3*n^4+12*n^2+2, n > 0.

Original entry on oeis.org

17, 353, 7793, 45377, 588737, 1603073, 2131937, 2782097, 23705153, 27488177, 36393857, 142457633, 156688577, 288296417, 423617057, 780627473, 830968337, 938914433, 1254730193, 5724613457, 9150064577, 13500386657, 15247220033
Offset: 1

Author

Rafael Parra Machio, Jun 07 2011

Keywords

Comments

Prime sums of three consecutive fourth powers, since 3*n^4+12*n^2+2 = (n-1)^4+n^4+(n+1)^4.
Primes in A160827.

Examples

			2^4+3^4+4^4 = 353 is prime and therefore in the sequence.
		

Crossrefs

Cf. A160827.

Programs

  • Magma
    [ p: n in [0..300] | IsPrime(p) where p is n^4+(n+1)^4+(n+2)^4 ];
  • Mathematica
    lst={};Do[If[PrimeQ[p=(n+1)^4+n^4+ (n-1)^4], AppendTo[lst,p]],{n, 100}];lst
    lst={};Do[If[PrimeQ[p=3*n^4+12*n^2+2], AppendTo[lst, p]],{n,100}];lst

A188269 Prime numbers of the form k^4 + k^3 + 4*k^2 + 7*k + 5 = k^4 + (k+1)^3 + (k+2)^2.

Original entry on oeis.org

5, 59, 348077, 10023053, 30414227, 55367063, 72452489, 85856933, 109346759, 182679473, 254112143, 305966369, 433051637, 727914497, 2029672529, 4178961167, 6528621257, 8346080159, 12783893813, 17220494579, 17993776223, 19618171127, 23673478589, 29448235247, 43333033853
Offset: 1

Author

Rafael Parra Machio, Jun 09 2011

Keywords

Comments

Bunyakovsky's conjecture implies that this sequence is infinite. - Charles R Greathouse IV, Jun 09 2011
All the terms in the sequence are congruent to 2 mod 3. - K. D. Bajpai, Apr 11 2014

Examples

			5 is prime and appears in the sequence because 0^4 + 1^3 + 2^2 = 5.
59 is prime and appears in the sequence because 2^4 + 3^3 + 4^2 = 59.
348077 = 24^4 + (24+1)^3 + (24+2)^2 = 24^4 + 25^3 + 26^2.
10023053 = 56^4 + (56+1)^3 + (56+2)^2 = 56^4 + 57^3 + 58^2.
		

Crossrefs

Programs

  • Maple
    select(isprime, [n^4+(n+1)^3+(n+2)^2$n=0..1000])[]; # K. D. Bajpai, Apr 11 2014
  • Mathematica
    lst={};Do[If[PrimeQ[p=n^4+n^3+4*n^2+7*n+5], AppendTo[lst, p]],{n,200}];lst
    Select[Table[n^4+n^3+4n^2+7n+5,{n,500}],PrimeQ] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=n^4+n^3+4*n^2+7*n+5),print1(k", "))) \\ Charles R Greathouse IV, Jun 09 2011

Extensions

Duplicate Mathematica program deleted by Harvey P. Dale, Jun 19 2011
Missing term 5 inserted by Alois P. Heinz, Sep 21 2024

A190780 a(n) = 2*(n^8 + 224*n^4 + 256)^2.

Original entry on oeis.org

131072, 462722, 33554432, 1246103042, 30324948992, 563669272322, 7763186941952, 79452617800322, 626224351281152, 3963462651845762, 20906139893891072, 94733225757031682, 377800938372595712, 1351791004705013762, 4406854039510188032, 13253329257388072322
Offset: 0

Author

Rafael Parra Machio, May 19 2011

Keywords

Comments

Each term equals the sum of three eighth powers and also twice a perfect square: a(n)= 2*(n^8+14n^4*2^4+2^8)^2.
More generally, a(n,k) = 2*(n^8+14*n^4*k^4+k^8)^2 = x^8+y^8+z^8, where x=n^2-k^2; y=n^2+k^2; z=2*n*k.

Examples

			462722 = 3^8+5^8+4^8 = 2*481^2.
563669272322 = 21^8+29^8+20^8 = 2*481^2.
Triplets (x,y,z) for k=2: {-3,5,4}, {0,8,8}, {5,13,12}, {12,20,16}, {21,29,20}, {32,40,24}, {45,53,28}, {60, 68,32}, {77,85,36},
{96,104,40}, see A028347 for x, A087475 for y, A008586 for z.
		

References

  • Robert Carmichael, Diophantine Analysis, Ed. 1915 by Mathematical Monographs, pages 96

Programs

  • Mathematica
    Table[2(m^8+14m^4n^4+n^8)^2,{m,1,10}]/. n -> 2
    Table[(m^2-n^2)^8+(m^2+n^2)^8+(2*m*n), {m, 1, 10}]/. n -> 2
    Table[{(m^2-2^2), (m^2+2^2), (2*m*2)}, {m, 1, 5}], (* triples x, y, z *)
    Table[2(n^8+224n^4+256)^2,{n,0,20}] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    a(n)=2*(n^4+4*n^3+8*n^2-16*n+16)^2*(n^4-4*n^3+8*n^2+16*n+16)^2 ; \\ Charles R Greathouse IV, May 19 2011

Formula

a(n) = 2*(n^8+14*n^4*2^4+2^8)^2.
G.f.: ( -131072 +1765502*x -43513950*x^2 -649478930*x^3 -13701900430*x^4 -195088344234*x^5 -1536270678326*x^6 -6277763482330*x^7 -12900117572550*x^8 -12896931212230*x^9 -6280312570586*x^10 -1534648531254*x^11 -195899417770*x^12 -13389949070*x^13 -738607890*x^14 -25688158*x^15 -462722*x^16 ) / (x-1)^17. - R. J. Mathar, Jun 04 2011

Extensions

More terms from Harvey P. Dale, Jun 29 2011

A190176 a(n) = n^4 + 2^4 + (n+2)^4.

Original entry on oeis.org

32, 98, 288, 722, 1568, 3042, 5408, 8978, 14112, 21218, 30752, 43218, 59168, 79202, 103968, 134162, 170528, 213858, 264992, 324818, 394272, 474338, 566048, 670482, 788768, 922082, 1071648, 1238738, 1424672, 1630818, 1858592
Offset: 0

Author

Rafael Parra Machio, May 19 2011

Keywords

Comments

Each term equals the sum of three fourth powers and also twice a perfect square: n^4 + 2^4 + (n+2)^4 = 2*(n^2 + 2*n + 2^2)^2.
More generally, n^4 + k^4 + (n+k)^4 = 2*(n^2 + n*k + k^2)^2; in this case, k=2.

Examples

			a(3) = 722 = 3^4 +2^4+(3+2)^4 = 2(3^2+3*2+2^2)^2 = 2*19^2.
a(13) = 79202 = 13^4+2^4+(13 + 2)^4 = 2(13^2+13*2+2^2)^2 = 2*199^2.
		

References

  • Robert Carmichael, Diophantine Analysis, Ed. 1915 by Mathematical Monographs, pages 66-67.

Programs

  • Magma
    [n^4+2^4+(n+2)^4: n in [0..35]]; // Vincenzo Librandi, Jun 09 2011
    
  • Mathematica
    Table[n^4+2^4+(n+2)^4,{n,0,20}]
    CoefficientList[Series[(32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5, {x,0,50}], x] (* G. C. Greubel, Dec 28 2017 *)
    LinearRecurrence[{5,-10,10,-5,1},{32,98,288,722,1568},50] (* Harvey P. Dale, May 26 2023 *)
  • PARI
    a(n)=2*(n^2+2*n+4)^2 \\ Charles R Greathouse IV, Jun 08 2011
    
  • PARI
    x='x+O('x^30); Vec((32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5 ) \\ G. C. Greubel, Dec 28 2017

Formula

G.f.: (32 - 62*x + 118*x^2 - 58*x^3 + 18*x^4)/(1-x)^5.