cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088560 Sum of odd entries in row n of Pascal's triangle.

Original entry on oeis.org

1, 2, 2, 8, 2, 12, 32, 128, 2, 20, 92, 464, 992, 4032, 8192, 32768, 2, 36, 308, 2320, 9692, 52712, 164320, 781312, 1470944, 6249152, 13748672, 56768768, 67100672, 268419072, 536870912, 2147483648, 2, 68, 1124, 14352, 117812, 1003960, 5670400
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 17 2003

Keywords

Comments

a(n) = a power of 2 iff n = 2^k - 2, 2^k - 1 or 2^k.
a(n) = A088504(n) iff n = 2^k - 2, k>1. a(n) > A088504(n) iff n = 2^k - 1.
Sums of rows of the triangle in A143333. - Reinhard Zumkeller, Oct 24 2010

Crossrefs

Programs

  • Maple
    T:= [1]: R:= 1:
    for i from 1 to 50 do
      T:= [1,op(T[2..-1]+T[1..-2]),1];
      R:= R, convert(select(type,T,odd),`+`)
    od:
    R; # Robert Israel, Apr 17 2020
  • Mathematica
    f[n_] := Plus @@ Select[ Table[ Binomial[n, i], {i, 0, n}], OddQ[ # ] & ]; Table[ f[n], {n, 0, 38}] (* Robert G. Wilson v, Nov 19 2003 *)
  • PARI
    a(n)=sum(i=0,n,binomial(n,i)*(binomial(n,i)%2))

Formula

a(n) + A088504(n) = 2^n. A088504(n) - a(n) = A085814(n).
a(2^n)=2; a(2^n-1)=2^(2^n-1); a(2^n+1)=2^(n+1)+4 ... - Benoit Cloitre, Nov 19 2003

Extensions

Edited and extended by Robert G. Wilson v and Ray Chandler, Nov 19 2003