A088580 a(n) = 1 + sigma(n).
2, 4, 5, 8, 7, 13, 9, 16, 14, 19, 13, 29, 15, 25, 25, 32, 19, 40, 21, 43, 33, 37, 25, 61, 32, 43, 41, 57, 31, 73, 33, 64, 49, 55, 49, 92, 39, 61, 57, 91, 43, 97, 45, 85, 79, 73, 49, 125, 58, 94, 73, 99, 55, 121, 73, 121, 81, 91, 61, 169, 63, 97, 105, 128, 85, 145, 69, 127, 97
Offset: 1
Examples
a(2)=4. If W=<s, t|s^2=t^2=1, st=ts> then the reflection subgroups are {1}, <s>, <t>, <s, t>.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n)
Crossrefs
Programs
-
Haskell
a088580 = (+ 1) . a000203 -- Reinhard Zumkeller, Dec 20 2014
-
Magma
[1+SumOfDivisors(n): n in [1..100]]; // Vincenzo Librandi, May 30 2015
-
Maple
map(1+numtheory:-sigma, [$1..1000]); # Robert Israel, May 29 2015
-
Mathematica
Table[1 + DivisorSigma[1, n], {n, 100}] (* Robert Price, May 29 2015 *)
Formula
a(n) = 1 + A000203(n).
G.f.: x/(1 - x) + Sum_{k>=1} x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 17 2017
Comments