A121238 a(n) = (-1)^(1+n+A088585(n)).
1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, 1
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The partitions of n = 1 through 6 are: 1; 2; 3=1+2; 4=1+3; 5=1+4=2+3; 6=1+5=2+4=1+2+3.
import Data.List (transpose) a088567 n = a088567_list !! n a088567_list = 1 : tail xs where xs = 0 : 1 : zipWith (+) xs (tail $ concat $ transpose [xs, tail xs]) -- Reinhard Zumkeller, Nov 15 2012
f := proc(n) option remember; local t1,i; if n <= 2 then RETURN(1); fi; t1 := add(f(i),i=0..floor(n/2)); if n mod 2 = 0 then RETURN(t1-1); fi; t1; end; t1 := 1 + x/(1-x); t2 := add( x^(3*2^(k-1))/ mul( (1-x^(2^j)),j=0..k), k=1..10); series(t1+t2, x, 256); # increase 10 to get more terms
max = 63; f = 1 + x/(1-x) + Sum[x^(3*2^(k-1))/Product[(1-x^(2^j)), {j, 0, k}], {k, 1, Log[2, max]}]; s = Series[f, {x, 0, max}] // Normal; a[n_] := Coefficient[s, x, n]; Table[a[n], {n, 0, max}] (* Jean-François Alcover, May 06 2014 *)
G.f. = x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 6*x^8 + 7*x^9 + ...
a[ n_] := If[ n < 0, 0, Module[{A = 0}, Do[A = (x + (1 + x) (A /. x -> x^2)) / (1 - x^2), {IntegerLength[ n, 2]}]; SeriesCoefficient[ A, {x, 0, n}]]];
{a(n) = my(A = O(x)); if( n<0, 0, for(k=1, #binary(n), A = (x + (1 + x) * subst(A, x, x^2)) / (1 - x^2)); polcoeff(A, n))};
{a(n) = if( n<0, 0, polcoeff( sum(k=0, #binary(n\3), x^(2^k*3 \ 2) / prod(j=0, k, 1 - x^2^j), x * O(x^n)), n))};
Comments