cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A088688 Binomial transform of A088689.

Original entry on oeis.org

0, 1, 3, 6, 12, 27, 63, 141, 297, 594, 1146, 2169, 4095, 7827, 15291, 30582, 62256, 127791, 262143, 534129, 1078101, 2156202, 4282878, 8477181, 16777215, 33288711, 66311703, 132623406, 266043972, 534479427, 1073741823, 2154658101
Offset: 0

Views

Author

Paul Barry, Oct 06 2003

Keywords

Crossrefs

Cf. A001045.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * Mod[k*Floor[3*(k+1)/2] - 2*k, 3], {k, 0, n}], {n, 0, 40}] (* Vaclav Kotesovec, Oct 30 2017 *)
    CoefficientList[Series[-x(1-3x+3x^2+x^3)/((2x-1)(x^2-x+1)(3x^2-3x+1)),{x,0,40}],x] (* or *) LinearRecurrence[{6,-15,20,-15,6},{0,1,3,6,12},40] (* Harvey P. Dale, Aug 28 2025 *)

Formula

a(n) = 2^n - cos(Pi*n/3) - 3^(n/2)*sin(Pi*n/6)/sqrt(3).
O.g.f.: -x(1-3x+3x^2+x^3)/[(2x-1)(x^2-x+1)(3x^2-3x+1)]. - R. J. Mathar, Apr 02 2008

A175286 Pisano period of the Jacobsthal sequence A001045 modulo n.

Original entry on oeis.org

1, 1, 6, 2, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, 6, 10, 22, 6, 20, 12, 54, 6, 28, 12, 10, 2, 30, 8, 12, 18, 36, 18, 12, 4, 20, 6, 14, 10, 36, 22, 46, 6, 42, 20, 24, 12, 52, 54, 20, 6, 18, 28, 58, 12, 60, 10, 18, 2, 12, 30, 66, 8, 66, 12, 70, 18, 18, 36, 60, 18, 30, 12, 78, 4
Offset: 1

Views

Author

R. J. Mathar, Mar 21 2010

Keywords

Examples

			Reading the sequence 0, 1, 1, 3, 5, 11, 21, ... modulo n=3, we get 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, ... = A088689, which has a period (1, 1, 0, 2, 2, 0) of length a(n=3) = 6.
		

Crossrefs

A110568 Period 6: repeat [1, 0, 2, 2, 0, 1].

Original entry on oeis.org

1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2, 2, 0, 1, 1, 0, 2
Offset: 0

Views

Author

Paul Barry, Jul 27 2005

Keywords

Comments

Permutation of {0, 1, 2}, followed by its reversal, repeated.

Crossrefs

Programs

  • Magma
    &cat [[1, 0, 2, 2, 0, 1]^^30]; // Wesley Ivan Hurt, Jun 28 2016
    
  • Maple
    A110568:=n->[1, 0, 2, 2, 0, 1][(n mod 6)+1]: seq(A110568(n), n=0..100); # Wesley Ivan Hurt, Jun 28 2016
  • Mathematica
    Mod[#,3]&/@CoefficientList[Series[(1-x)/(1-x-2x^2),{x,0,100}],x] (* Harvey P. Dale, Mar 30 2011 *)
    PadRight[{}, 100, {1, 0, 2, 2, 0, 1}] (* Wesley Ivan Hurt, Jun 28 2016 *)
    LinearRecurrence[{1,-1,1,-1,1},{1,0,2,2,0},100] (* Harvey P. Dale, Apr 03 2019 *)
  • PARI
    x='x+O('x^50); Vec((1-x+3*x^2-x^3+x^4)/(1-x+x^2-x^3+x^4-x^5)) \\ G. C. Greubel, Aug 31 2017

Formula

a(n) = A078008(n) mod 3.
G.f.: (1-x+3*x^2-x^3+x^4) / (1-x+x^2-x^3+x^4-x^5).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = 1 + cos(2*Pi*n/3)/2 - sqrt(3)*sin(2*Pi*n/3)/2 - cos(Pi*n/3)/2 + sqrt(3)*sin(Pi*n/3)/6.
a(n) = a(n-6) for n > 5. - Wesley Ivan Hurt, Jun 28 2016
a(n) = ((n-1)*(-1)^(n-1) mod 3). - Wesley Ivan Hurt, Jan 07 2021

Extensions

Name changed by Wesley Ivan Hurt, Jun 28 2016
Showing 1-3 of 3 results.