cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A088714 G.f. satisfies A(x) = 1 + x*A(x)^2*A(x*A(x)).

Original entry on oeis.org

1, 1, 3, 13, 69, 419, 2809, 20353, 157199, 1281993, 10963825, 97828031, 907177801, 8716049417, 86553001779, 886573220093, 9351927111901, 101447092428243, 1130357986741545, 12923637003161409, 151479552582252239
Offset: 0

Views

Author

Paul D. Hanna, Oct 12 2003, May 22 2008

Keywords

Comments

Equals row sums of triangle A291820.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
The g.f. A(x) satisfies:
x*A(x) = x + x^2*A(x) + d/dx x^4*A(x)^2/2! + d^2/dx^2 x^6*A(x)^3/3! + d^3/dx^3 x^8*A(x)^4/4! +...
The logarithm of the g.f. is given by:
log(A(x)) = x*A(x) + d/dx x^3*A(x)^2/2! + d^2/dx^2 x^5*A(x)^3/3! + d^3/dx^3 x^7*A(x)^4/4! + d^4/dx^4 x^9*A(x)^5/5! +...
From _Paul D. Hanna_, Apr 16 2007: (Start)
G.f. A(x) is the unique solution to variable A in the infinite system of simultaneous equations:
A = 1 + x*A*B;
B = A + x*B*C;
C = B + x*C*D;
D = C + x*D*E;
E = D + x*E*F ; ...
where variables B,C,D,E,..., are formed from successive iterations of x*A(x):
B = A(x)*A(x*A(x)), C = B*A(x*B), D = C*A(x*C), E = D*A(x*D), ...;
more explicilty,
B = 1 + 2*x + 8*x^2 + 42*x^3 + 258*x^4 + 1764*x^5 + 13070*x^6 +...,
C = 1 + 3*x + 15*x^2 + 93*x^3 + 655*x^4 + 5039*x^5 + 41453*x^6 +...,
D = 1 + 4*x + 24*x^2 + 172*x^3 + 1372*x^4 + 11796*x^5 +...,
E = 1 + 5*x + 35*x^2 + 285*x^3 + 2545*x^4 + 24255*x^5 +...,
... (End)
Related expansions:
A(x*A(x)) = 1 + x + 4*x^2 + 22*x^3 + 142*x^4 + 1016*x^5 + 7838*x^6 + 64174*x^7 + 552112*x^8 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 173*x^4 + 1054*x^5 + 7039*x^6 + 50632*x^7 + 387613*x^8 +...
d/dx x^4*A(x)^2/2! = 2*x^3 + 5*x^4 + 21*x^5 + 112*x^6 + 692*x^7 + 4743*x^8 +...
d^2/dx^2 x^6*A(x)^3/3! = 5*x^4 + 21*x^5 + 112*x^6 + 696*x^7 + 4815*x^8 +...
d^3/dx^3 x^8*A(x)^4/4! = 14*x^5 + 84*x^6 + 540*x^7 + 3795*x^8 +...
d^4/dx^4 x^10*A(x)^5/5! = 42*x^6 + 330*x^7 + 2475*x^8 + 19305*x^9 +...
...
d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n! = A000108(n)*x^(n+1) +...
		

Crossrefs

Apart from signs, same as A067145. - Philippe Deléham, Jun 18 2006

Programs

  • Mathematica
    m = 21; A[] = 1; Do[A[x] = 1 + x A[x]^2 A[x A[x]] + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n++; A = x + O(x^2); for(i=2, n, A = x / (1 - subst(A, x, A))); polcoeff(A, n))}; /* Michael Somos, May 21 2005 */
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2); for(i=1,n, A=1/(1-x*A*subst(A,x,x*A)));polcoeff(A,n))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=1+x+O(x^2);for(i=0,n, A=(1/x)*serreverse(x-x^2*A));polcoeff(A,n))}
    
  • PARI
    {a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n+k+m,k)/(n+k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, Dec 18 2010] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=exp(sum(m=1, n, Dx(m-1, x^(2*m-1)*A^m/m!))+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))
    
  • PARI
    /* n-th Derivative: */
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    /* G.f.: [Paul D. Hanna, May 31 2012] */
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n,A=1+(1/x)*sum(m=1, n+1, Dx(m-1, x^(2*m)*A^m/m!))+x*O(x^n)); polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f. satisfies:
(1) A(x) = (1/x)*Series_Reversion(x - x^2*A(x)).
(2) A(x) = 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n)*A(x)^n/n!.
(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(2*n-1)*A(x)^n/n! ).
(4) A(x) = 1/(1 - x*A(x)*A(x*A(x))).
(5) A(x) = f(x*A(x)) = (1-1/f(x))/x where f(x) is the g.f. of A088713.
Given g.f. A(x), then B(x) = x*A(x) satisfies 0 = f(x, B(x), B(B(x))) where f(a0, a1, a2) = a0 - a1 + a1*a2. - Michael Somos, May 21 2005
From Paul D. Hanna, Jul 09 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n with a(0,m)=1, then
a(n,m) = Sum_{k=0..n} m*C(n+k+m,k)/(n+k+m) * a(n-k,k).
(End)
a(n) = Sum_{k=0..n} A291820(n+1,k). - Paul D. Hanna, Sep 01 2017

A145167 G.f. A(x) satisfies A(x/A(x)^6) = 1/(1-x).

Original entry on oeis.org

1, 1, 7, 106, 2349, 65078, 2093770, 75175383, 2941004409, 123442051582, 5500018250128, 258162075155942, 12693904947530988, 651028563908092621, 34708995997762871047, 1918449419812267920842, 109690826250327197055475
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A^6);A=1/(1-B));polcoeff(A,n)}

Formula

G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^6.
Self-convolution square yields A145168.
Self-convolution cube yields A145169.
Self-convolution 6th power yields A145170.

A145158 G.f. A(x) satisfies A(x/A(x)^2) = 1/(1-x).

Original entry on oeis.org

1, 1, 3, 16, 121, 1143, 12570, 154551, 2072547, 29829412, 455731327, 7332989616, 123548350018, 2169987439342, 39595583375433, 748541216196285, 14628467191450947, 294984129900772611, 6128372452917891216
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 121*x^4 + 1143*x^5 +...
x/A(x)^2 = x - 2*x^2 - 3*x^3 - 18*x^4 - 150*x^5 - 1518*x^6 -...
1/A(x) = 1 - x - 2*x^2 - 11*x^3 - 88*x^4 - 869*x^5 - 9876*x^6 -...
Series_Reversion[x/A(x)^2] = x + 2*x^2 + 11*x^3 + 88*x^4 + 869*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(n=0,n,B=serreverse(x/A^2);A=1/(1-B));polcoeff(A,n)}

Formula

G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^2.
Self-convolution yields A145159.

A145160 G.f. A(x) satisfies A(x/A(x)^3) = 1/(1-x).

Original entry on oeis.org

1, 1, 4, 31, 347, 4860, 79174, 1440837, 28584939, 608533714, 13751688892, 327333165775, 8160149459870, 212121519165566, 5730205766494409, 160425928432680795, 4644491031188023566, 138792548776938444503
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(n=0,n,B=serreverse(x/A^3);A=1/(1-B));polcoeff(A,n)}

Formula

G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^3.
Self-convolution cube yields A145161.

A145162 G.f. A(x) satisfies A(x/A(x)^4) = 1/(1-x).

Original entry on oeis.org

1, 1, 5, 51, 757, 14058, 303443, 7313188, 192096189, 5413972155, 161972306602, 5104569475976, 168500227127871, 5800706769824992, 207552636468976072, 7697809237540240440, 295284422299359774761, 11693774821978063710405
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A^4);A=1/(1-B));polcoeff(A,n)}

Formula

G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^4.
Self-convolution square yields A145163.
Self-convolution 4th power yields A145164.

A145165 G.f. A(x) satisfies A(x/A(x)^5) = 1/(1-x).

Original entry on oeis.org

1, 1, 6, 76, 1406, 32531, 874407, 26234503, 857727024, 30087607090, 1120358453641, 43948073274103, 1805827523343241, 77390779901965470, 3447553371343457810, 159209478315871014816, 7605143367385966288569
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A^5);A=1/(1-B));polcoeff(A,n)}

Formula

G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^5.
Self-convolution 5th power yields A145166.

A233436 a(n) = Sum_{k=0..n-1} [x^k] A(x)^(n-1) for n>=1 with a(0)=1, where g.f. A(x) = Sum_{n>=0} a(n)*x^n.

Original entry on oeis.org

1, 1, 2, 8, 50, 424, 4472, 55760, 797022, 12801296, 227829866, 4446822688, 94422531876, 2166975912496, 53457972027254, 1410960809766320, 39680975219789210, 1184783226216138592, 37434788449030871076, 1248022160663960432264, 43785432805297352937954, 1612690422384099635004264
Offset: 0

Views

Author

Paul D. Hanna, Dec 09 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 50*x^4 + 424*x^5 + 4472*x^6 + 55760*x^7 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0 = [1],0,  0,   0,    0,     0,      0,       0,        0, ...;
A^1 = [1, 1], 2,   8,   50,   424,   4472,   55760,   797022, ...;
A^2 = [1, 2,  5], 20,  120,   980,  10056,  122960,  1732736, ...;
A^3 = [1, 3,  9,  37], 216,  1704,  17006,  203760,  2829030, ...;
A^4 = [1, 4, 14,  60,  345], 2640,  25632,  300744,  4111472, ...;
A^5 = [1, 5, 20,  90,  515,  3841], 36310,  417000,  5609960, ...;
A^6 = [1, 6, 27, 128,  735,  5370,  49493], 556212,  7359480, ...;
A^7 = [1, 7, 35, 175, 1015,  7301,  65723,  722765], 9400986, ...;
A^8 = [1, 8, 44, 232, 1366,  9720,  85644,  921864, 11782417], ...; ...
then a(n) equals the sum of the coefficients of x^k, k=0..n-1, in A(x)^(n-1) (shown above in brackets) for n>=1:
a(1) = 1 = 1;
a(2) = 1 +  1 = 2;
a(3) = 1 +  2 +  5 = 8;
a(4) = 1 +  3 +  9 +  37 = 50;
a(5) = 1 +  4 + 14 +  60 +  345 = 424;
a(6) = 1 +  5 + 20 +  90 +  515 + 3841 = 4472;
a(7) = 1 +  6 + 27 + 128 +  735 + 5370 + 49493 = 55760;
a(8) = 1 +  7 + 35 + 175 + 1015 + 7301 + 65723 + 722765 = 797022; ...
Also, from a diagonal in the above table we can obtain the coefficients:
[1/1, 2/2, 9/3, 60/4, 515/5, 5370/6, 65723/7, 921864/8, ...]
to form the power series
G(x) = 1 + x + 3*x^2 + 15*x^3 + 103*x^4 + 895*x^5 + 9389*x^6 + 115233*x^7 +...
that satisfies: A(x) = G(x/A(x)) = 1 + x*(G(x) + x*G'(x))/(G(x) - x*G(x)^2).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);if(n==0,1,for(i=1,n,
    A=1+sum(k=1,n-1,sum(j=0,k-1,polcoeff(A^(k-1)+x*O(x^j),j))*x^k)+x*O(x^n));
    sum(j=0,n-1,polcoeff(A^(n-1)+x*O(x^j),j)))}
    for(n=0,20,print1(a(n),", "))

Formula

Given g.f. A(x), let G(x) = A(x*G(x)), then A(x) = G(x/A(x)) = 1 + x*(G(x) + x*G'(x)) / (G(x) - x*G(x)^2).
a(n)/a(n-1) ~ n/LambertW(1). - Vaclav Kotesovec, Sep 14 2024
Showing 1-7 of 7 results.