cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088802 Denominators of the coefficients of powers of n^(-1) in the Romanovsky series expansion of the mean of the standard deviation from a normal population.

Original entry on oeis.org

1, 4, 32, 128, 2048, 8192, 65536, 262144, 8388608, 33554432, 268435456, 1073741824, 17179869184, 68719476736, 549755813888, 2199023255552, 140737488355328, 562949953421312, 4503599627370496, 18014398509481984
Offset: 0

Views

Author

Eric W. Weisstein, Oct 16 2003

Keywords

Comments

Is this the same sequence as A123854? - N. J. A. Sloane, Mar 21 2007
Almost certainly this is the same as A123854. - Michael Somos, Aug 23 2007
Asymptotic expansion of Gamma(N/2) / Gamma((N-1)/2) = (N/2)^(1/2) * (c(0) + c(1)/N + c(2)/N^2 + ... ). a(n) = denominator(c(n)). - Michael Somos, Aug 23 2007

References

  • V. Romanovsky, On the Moments of the Standard Deviation and of the Correlation Coefficient in Samples from Normal, Metron 5(4) (1925), 3-46.

Crossrefs

Programs

  • GAP
    List([0..25], n-> DenominatorRat(Sum([0..n], k-> Binomial(2*k, k)/8^k))); # G. C. Greubel, Jan 29 2020
  • Magma
    [Denominator( &+[Binomial(2*k, k)/8^k: k in [0..n]] ): n in [0..25]]; // G. C. Greubel, Jan 29 2020
    
  • Maple
    seq(denom(add(binomial(2*k, k)/8^k, k = 0 .. n)), n = 0..25); # G. C. Greubel, Jan 29 2020
  • Mathematica
    Table[Denominator[Sum[Binomial[2*k, k]/8^k, {k,0,n}]], {n,0,25}] (* G. C. Greubel, Jan 29 2020 *)
  • PARI
    {a(n) = if( n<0, 0, 2^(3*n - subst( Pol( binary( n ) ), x, 1) ) ) } /* Michael Somos, Aug 23 2007 */
    
  • Sage
    [denominator( binomial(1/4, n) ) for n in (0..25)] # G. C. Greubel, Jan 29 2020
    

Formula

From G. C. Greubel, Jan 29 2020: (Start)
a(n) = denominator(Sum_{k=0..n} binomial(2*k, k)/8^k).
a(n) = denominator(binomial(1/4, n)). (End)