A088827 Even numbers with odd abundance: even squares or two times squares.
2, 4, 8, 16, 18, 32, 36, 50, 64, 72, 98, 100, 128, 144, 162, 196, 200, 242, 256, 288, 324, 338, 392, 400, 450, 484, 512, 576, 578, 648, 676, 722, 784, 800, 882, 900, 968, 1024, 1058, 1152, 1156, 1250, 1296, 1352, 1444, 1458, 1568, 1600, 1682, 1764, 1800, 1922
Offset: 1
Examples
From _Michael De Vlieger_, May 14 2017: (Start) 4 is a term since it is even and the sum of its divisors {1,2,4} = 7 - 2(4) = -1 is odd. It is an even square. 18 is a term since it is even and the sum of its divisors {1,2,3,6,9,18} = 39 - 2(18) = 3 is odd. It is 2 times a square, i.e., 2(9). (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Do[s=DivisorSigma[1, n]-2*n; If[OddQ[s]&&!OddQ[n], Print[{n, s}]], {n, 1, 1000}] (* Second program: *) Select[Range[2, 2000, 2], OddQ[DivisorSigma[1, #] - 2 #] &] (* Michael De Vlieger, May 14 2017 *)
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square def A088827_gen(startvalue=2): # generator of terms >= startvalue return filter(lambda n:is_square(n) or is_square(n>>1),count(max(startvalue+(startvalue&1),2),2)) A088827_list = list(islice(A088827_gen(),30)) # Chai Wah Wu, Jul 06 2023
Formula
Conjecture: a(n) = ((2*r) + 1)^2 * 2^(c+1) where r and c are the corresponding row and column of n in the table format of A191432, where the first row and column are 0. - John Tyler Rascoe, Jul 12 2022
Sum_{n>=1} 1/a(n) = Pi^2/8 (A111003). - Amiram Eldar, Jul 09 2023
Comments