cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A016754 Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0

Views

Author

Keywords

Comments

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl, Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25, ... and the line from 9, in the direction 9, 49, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009
Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011
Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012
Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus, Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev, Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh, Dec 25 2016
Engel expansion of Pi*StruveL_0(1)/2 where StruveL_0(1) is A197037. - Benedict W. J. Irwin, Jun 21 2018
Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; the segments on the hypotenuse {p = a(n)/A001844(n), q = A060300(n)/A001844(n) = A001844(n) - p} and their ratio p/q = a(n)/A060300(n) are irreducible fractions in Q\Z. X values are A005408, Y values are A046092, Z values are A001844. - Ralf Steiner, Feb 25 2020
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 (A344332). - Bernard Schott, Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott, Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742 (see Comment of Jan 26 2018). - Bernard Schott, Feb 24 2023
From Peter Bala, Jan 03 2024: (Start)
The sequence terms are the exponents of q in the series expansions of the following infinite products:
1) q*Product_{n >= 1} (1 - q^(16*n))*(1 + q^(8*n)) = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + ....
2) q*Product_{n >= 1} (1 + q^(16*n))*(1 - q^(8*n)) = q - q^9 - q^25 + q^49 + q^81 - q^121 - q^169 + + - - ....
3) q*Product_{n >= 1} (1 - q^(8*n))^3 = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 - + ....
4) q*Product_{n >= 1} ( (1 + q^(8*n))*(1 - q^(16*n))/(1 + q^(16*n)) )^3 = q + 3*q^9 - 5*q^25 - 7*q^49 + 9*q^81 + 11*q^121 - 13*q^169 - 15*q^225 + + - - .... (End)

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A000447 (partial sums).
Cf. A348005, A379481 [= a(A048673(n)-1)].
Partial sums of A022144.
Positions of odd terms in A341528.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 1 + Sum_{i=1..n} 8*i = 1 + 8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010
O.g.f.: (1+6*x+x^2)/(1-x)^3. - R. J. Mathar, Jan 11 2008
a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008
a(n) = A061038(2+4n). - Paul Curtz, Oct 26 2008
Sum_{n>=0} 1/a(n) = Pi^2/8 = A111003. - Jaume Oliver Lafont, Mar 07 2009
a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009
a(n) = a(n-1) + 8*n with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009
a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = (A005408(n))^2. - Zak Seidov, Nov 29 2011
From George F. Johnson, Sep 05 2012: (Start)
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach, Jul 12 2013
E.g.f.: (1 + 8*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 23 2016
a(n) = A101321(8,n). - R. J. Mathar, Jul 28 2016
Product_{n>=1} A033996(n)/a(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A014105(n) + A000384(n+1). - Bruce J. Nicholson, Nov 11 2017
a(n) = A003215(n) + A002378(n). - Klaus Purath, Jun 09 2020
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Sum_{n>=0} (-1)^n/a(n) = A006752. - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 (A003881). (End)
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A014634(n) - A002943(n). See Diamond Triangles illustration.
a(n) = A003154(n+1) - A046092(n). See Diamond Stars illustration. (End)
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 - ... ))))).
Row 2 of A142992. (End)
From Peter Bala, Mar 26 2024: (Start)
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 + ... + (4*n^2 - 1)/(8 + ... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813. (End)

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002

A016957 a(n) = 6*n + 4.

Original entry on oeis.org

4, 10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 136, 142, 148, 154, 160, 166, 172, 178, 184, 190, 196, 202, 208, 214, 220, 226, 232, 238, 244, 250, 256, 262, 268, 274, 280, 286, 292, 298, 304, 310, 316, 322, 328
Offset: 0

Views

Author

Keywords

Comments

Number of 2 X n binary matrices avoiding simultaneously the right-angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by (n+2)*2^(m-1) + 2*m*(n-1) - 2 for m > 1 and n > 1. - Sergey Kitaev, Nov 12 2004
If Y is a 4-subset of an n-set X then, for n >= 4, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
4th transversal numbers (or 4-transversal numbers): Numbers of the 4th column of positive numbers in the square array of nonnegative and polygonal numbers A139600. Also, numbers of the 4th column in the square array A057145. - Omar E. Pol, May 02 2008
a(n) is the maximum number such that there exists an edge coloring of the complete graph with a(n) vertices using n colors and every subgraph whose edges are of the same color (subgraph induced by edge color) is planar. - Srikanth K S, Dec 18 2010
Also numbers having two antecedents in the Collatz problem: 12*n+8 and 2*n+1 (respectively A017617(n) and A005408(n)). - Michel Lagneau, Dec 28 2012
a(n) = 6n+4 has three undirected edges e1 = (3n+2, 6n+4), e2 = (6n+4, 12n+8) and e3 = (2n+1, 6n+4) in the Collatz graph of A006370. - Heinz Ebert, Mar 16 2021
Conjecture: this sequence contains some but not all, even numbers with odd abundance A088827. They appear in this sequence at indices A186424(n) - 1. - John Tyler Rascoe, Jul 09 2022

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189. - From N. J. A. Sloane, Dec 01 2012

Crossrefs

Programs

Formula

A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A016789(n)*2. - Omar E. Pol, May 02 2008
A157176(a(n)) = A067412(n+1). - Reinhard Zumkeller, Feb 24 2009
a(n) = sqrt(A016958(n)). - Zerinvary Lajos, Jun 30 2009
a(n) = 2*(6*n+1) - a(n-1) (with a(0)=4). - Vincenzo Librandi, Nov 20 2010
a(n) = floor((sqrt(36*n^2 - 36*n + 1) + 6*n + 1)/2). - Srikanth K S, Dec 18 2010
From Colin Barker, Jan 30 2012: (Start)
G.f.: 2*(2+x)/(1-2*x+x^2).
a(n) = 2*a(n-1) - a(n-2). (End)
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
a(n) = 3 * A005408(n) + 1. - Fred Daniel Kline, Oct 24 2015
a(n) = A057145(n+2,4). - R. J. Mathar, Jul 28 2016
a(4*n+2) = 4 * a(n). - Zhandos Mambetaliyev, Sep 22 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/18 - log(2)/6. - Amiram Eldar, Dec 10 2021
E.g.f.: 2*exp(x)*(2 + 3*x). - Stefano Spezia, May 29 2024

A094471 a(n) = Sum_{(n - k)|n, 0 <= k <= n} k.

Original entry on oeis.org

0, 1, 2, 5, 4, 12, 6, 17, 14, 22, 10, 44, 12, 32, 36, 49, 16, 69, 18, 78, 52, 52, 22, 132, 44, 62, 68, 112, 28, 168, 30, 129, 84, 82, 92, 233, 36, 92, 100, 230, 40, 240, 42, 180, 192, 112, 46, 356, 90, 207, 132, 214, 52, 312, 148, 328, 148, 142, 58, 552, 60
Offset: 1

Views

Author

Labos Elemer, May 28 2004

Keywords

Comments

Not all values arise and some arise more than once.
Row sums of triangle A134866. - Gary W. Adamson, Nov 14 2007
Sum of the largest parts of the partitions of n into two parts such that the smaller part divides the larger. - Wesley Ivan Hurt, Dec 21 2017
a(n) is also the sum of all parts minus the total number of parts of all partitions of n into equal parts (an interpretation of the Torlach Rush's formula). - Omar E. Pol, Nov 30 2019
If and only if sigma(n) divides a(n), then n is one of Ore's Harmonic numbers, A001599. - Antti Karttunen, Jul 18 2020

Examples

			q^2 + 2*q^3 + 5*q^4 + 4*q^5 + 12*q^6 + 6*q^7 + 17*q^8 + 14*q^9 + ...
For n = 4 the partitions of 4 into equal parts are [4], [2,2], [1,1,1,1]. The sum of all parts is 4 + 2 + 2 + 1 + 1 + 1 + 1 = 12. There are 7 parts, so a(4) = 12 - 7 = 5. - _Omar E. Pol_, Nov 30 2019
		

References

  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 30.

Crossrefs

Cf. A000005, A000010, A000203, A001599, A038040, A134866, A152211, A244051, A324121 (= gcd(a(n), sigma(n))).
Cf. A088827 (positions of odd terms).

Programs

  • Julia
    using AbstractAlgebra
    function A094471(n)
        sum(k for k in 0:n if is_divisible_by(n, n - k))
    end
    [A094471(n) for n in 1:61] |> println  # Peter Luschny, Nov 14 2023
    
  • Maple
    with(numtheory); A094471:=n->n*tau(n)-sigma(n); seq(A094471(k), k=1..100); # Wesley Ivan Hurt, Oct 27 2013
    divides := (k, n) -> k = n or (k > 0 and irem(n, k) = 0):
    a := n -> local k; add(`if`(divides(n - k, n), k, 0), k = 0..n):
    seq(a(n), n = 1..61);  # Peter Luschny, Nov 14 2023
  • Mathematica
    Table[n*DivisorSigma[0, n] - DivisorSigma[1, n], {n, 1, 100}]
  • PARI
    {a(n) = n*numdiv(n) - sigma(n)} /* Michael Somos, Jan 25 2008 */
    
  • Python
    from math import prod
    from sympy import factorint
    def A094471(n):
        f = factorint(n).items()
        return n*prod(e+1 for p,e in f)-prod((p**(e+1)-1)//(p-1) for p,e in f)
    # Chai Wah Wu, Nov 14 2023
  • SageMath
    def A094471(n): return sum(k for k in (0..n) if (n-k).divides(n))
    print([A094471(n) for n in range(1, 62)])  # Peter Luschny, Nov 14 2023
    

Formula

a(n) = n*tau(n) - sigma(n) = n*A000005(n) - A000203(n). [Previous name.]
If p is prime, then a(p) = p*tau(p)-sigma(p) = 2p-(p+1) = p-1 = phi(p).
If n>1, then a(n)>0.
a(n) = Sum_{d|n} (n-d). - Amarnath Murthy, Jul 31 2005
G.f.: Sum_{k>=1} k*x^(2*k)/(1 - x^k)^2. - Ilya Gutkovskiy, Oct 24 2018
a(n) = A038040(n) - A000203(n). - Torlach Rush, Feb 02 2019

Extensions

Simpler name by Peter Luschny, Nov 14 2023

A088828 Nonsquare positive odd numbers.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

Odd numbers with even abundance: primes and some composites too.
Odd numbers with odd abundance are in A016754. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829.
Or, odd numbers without the squares. - Gerald Hillier, Apr 12 2009

Examples

			n = p prime, abundance = 1 - p = even and negative;
n = 21, sigma = 1 + 3 + 7 + 21 = 32, abundance = 32 - 42 = -20.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..140 by 2] | IsEven(SumOfDivisors(n)-2*n) ]; // Klaus Brockhaus, Apr 15 2009
    
  • Mathematica
    Do[s=DivisorSigma[1, n]-2*n; If[ !OddQ[s]&&OddQ[n], Print[{n, s}]], {n, 1, 1000}]
    Select[Range[1, 500, 2], EvenQ[DivisorSigma[1, #] - 2 #] &] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
  • PARI
    isok(n) = (n>0) && (n % 2) && ! issquare(n); \\ Michel Marcus, Aug 28 2013
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A088828_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not is_square(n),count(max(startvalue+(startvalue&1^1),1),2))
    A088828_list = list(islice(A088828_gen(),30)) # Chai Wah Wu, Jul 06 2023
    
  • Python
    from math import isqrt
    def A088828(n): return (s:=(m:=isqrt(k:=(n<<1)-1))+(k-m*(m+1)>=1))+k+(s&1) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = 2*n + s - ((s+1) mod 2) where s = round(sqrt(2*n-1)). - Gerald Hillier, Apr 15 2009
A005408 SETMINUS A016754. - R. J. Mathar, Jun 16 2018
a(n) = 2*(n+h) + 1 where h = floor((1/4)*(sqrt(8*n) - 1)) is the largest value such that A014105(h) < n. - John Tyler Rascoe, Jul 05 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 31 2014 at the suggestion of Omar E. Pol

A003624 Duffinian numbers: composite numbers k relatively prime to sigma(k).

Original entry on oeis.org

4, 8, 9, 16, 21, 25, 27, 32, 35, 36, 39, 49, 50, 55, 57, 63, 64, 65, 75, 77, 81, 85, 93, 98, 100, 111, 115, 119, 121, 125, 128, 129, 133, 143, 144, 155, 161, 169, 171, 175, 183, 185, 187, 189, 201, 203, 205, 209, 215, 217, 219, 221, 225, 235, 237, 242, 243, 245, 247
Offset: 1

Views

Author

Keywords

Comments

All prime powers greater than 1 are in the sequence. No factorial number can be a term. - Arkadiusz Wesolowski, Feb 16 2014
Even terms are in A088827. Any term also in A005153 is either an even square or twice an even square not divisible by 3. - Jaycob Coleman, Jun 08 2014
All primes satisfy the second condition since gcd(p, p+1) = 1, thus making this sequence a proper subset of A014567. - Robert G. Wilson v, Oct 02 2014

Examples

			4 is in the sequence since it is not a prime, its divisors 1, 2, and 4 sum to 7, and gcd(7, 4) = 1.
21 is in the sequences since it is not a prime, and its divisors 1, 3, 7, and 21 sum to 32, which is coprime to 21.
		

References

  • T. Koshy, Elementary number theory with applications, Academic Press, 2002, p. 141, exerc. 6,7,8 and 9.
  • L. Richard Duffy, The Duffinian numbers, Journal of Recreational Mathematics 12 (1979), pp. 112-115.
  • Peter Heichelheim, There exist five Duffinian consecutive integers but not six, Journal of Recreational Mathematics 14 (1981-1982), pp. 25-28.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 64.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003624 n = a003624_list !! (n-1)
    a003624_list = filter ((== 1) . a009194) a002808_list
    -- Reinhard Zumkeller, Mar 23 2013
    
  • Mathematica
    fQ[n_] := n != 1 && !PrimeQ[n] && GCD[n, DivisorSigma[1, n]] == 1; Select[ Range@ 280, fQ]
  • PARI
    is(n)=gcd(n,sigma(n))==1&&!isprime(n) \\ Charles R Greathouse IV, Feb 13 2013
    
  • Python
    from math import gcd
    from itertools import count, islice
    from sympy import isprime, divisor_sigma
    def A003624_gen(startvalue=2): # generator of terms
        return filter(lambda k:not isprime(k) and gcd(k,divisor_sigma(k))==1,count(max(startvalue,2)))
    A003624_list = list(islice(A003624_gen(),30)) # Chai Wah Wu, Jul 06 2023

Formula

A009194(a(n)) * (1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Mar 23 2013
a(n) >> n log log log n, see Luca. (Clearly excluding the primes only makes the n-th term larger.) - Charles R Greathouse IV, Feb 17 2014

A088829 Even numbers with even abundance.

Original entry on oeis.org

6, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138, 140, 142, 146, 148, 150, 152
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

Odd numbers with odd abundance are in A016754. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827.

Examples

			Even perfect numbers are here.
n=10: sigma[10]=18, abundance=18-20=-2<0;
n=12: sigma[12]=28, abundance=28-24=+4>0.
sigma[n] is also even number; sign of abundance:<=>0.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]-2*n; If[ !OddQ[s]&&!OddQ[n], Print[{n, s}]], {n, 1, 1000}]

A082639 Numbers k such that 2*k*(k+2) is a square.

Original entry on oeis.org

0, 2, 16, 98, 576, 3362, 19600, 114242, 665856, 3880898, 22619536, 131836322, 768398400, 4478554082, 26102926096, 152139002498, 886731088896, 5168247530882, 30122754096400, 175568277047522, 1023286908188736
Offset: 1

Views

Author

James R. Buddenhagen, May 15 2003

Keywords

Comments

Even-indexed terms are squares. Their square roots form sequence A005319. Odd-indexed terms divided by 2 are squares. Their square roots form the sequence A002315. (Index starts at 0.)
Lower of two terms with difference 2 in A088827. - Ophir Spector, Nov 06 2024

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 2; a[n_] := a[n] = 6a[n - 1] - a[n - 2] + 4; Table[ a[n], {n, 0, 20}]
    LinearRecurrence[{7,-7,1},{0,2,16},30] (* Harvey P. Dale, Nov 21 2015 *)

Formula

a(n) = A001541(n) - 1.
a(n) = (1/2)*(s^n + t^n) - 1, where s = 3 + 2*sqrt(2), t = 3 - 2*sqrt(2). Note: s=1/t. a(n) = 6*a(n-1) - a(n-2) + 4, a(0)=0, a(1)=2.
a(n) = 1/kappa(sqrt(2)/A001542(n)); a(n) = 1/kappa(sqrt(8)/A005319(n)) where kappa(x) is the sum of successive remainders by computing the Euclidean algorithm for (1, x). - Thomas Baruchel, Nov 29 2003
G.f.: -2*x^2*(x+1)/((x-1)*(x^2-6*x+1)). - Colin Barker, Nov 22 2012

Extensions

More terms from Robert G. Wilson v, May 15 2003

A195382 Numbers such that the difference between the sum of the even divisors and the sum of the odd divisors is prime.

Original entry on oeis.org

4, 8, 16, 18, 32, 50, 256, 512, 578, 1458, 2048, 3362, 4802, 6962, 8192, 10082, 15842, 20402, 31250, 34322, 55778, 57122, 59858, 167042, 171698, 293378, 524288, 559682, 916658, 982802, 1062882, 1104098, 1158242, 1195058, 1367858, 1407842, 1414562
Offset: 1

Views

Author

Michel Lagneau, Sep 17 2011

Keywords

Comments

Note that these are all even numbers. The odd numbers, producing the negative of a prime, are all squares whose square roots are in A193070. - T. D. Noe, Sep 19 2011

Examples

			The divisors of 18 are  { 1, 2, 3, 6, 9, 18}, and  (2 + 6 + 18) - (1 + 3 + 9) = 13  is prime. Hence 18 is in the sequence.
		

Crossrefs

Subsequence of A088827.

Programs

  • Maple
    with(numtheory):for n from 2 by 2 to 200 do:x:=divisors(n):n1:=nops(x):s1:=0:s2:=0:for m from 1 to n1 do:if irem(x[m],2)=1 then s1:=s1+x[m]:else s2:=s2+x[m]:fi:od: if type(s2-s1,prime)=true then printf(`%d, `,n): else fi:od:
  • Mathematica
    f[n_] := Module[{d = Divisors[n], p}, p = Plus @@ Select[d, OddQ] - Plus @@ Select[d, EvenQ]; PrimeQ[p]]; Select[Range[2,1000000,2], f] (* T. D. Noe, Sep 19 2011 *)
  • PARI
    list(lim)=my(v=List(),t);forstep(n=3,sqrt(lim\2),2,if(isprime(s=sigma(n^2)),listput(v,2*n^2)));t=2;while((t*=2)<=lim,if(isprime(2*sigma(t/2)-1),listput(v,t)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 18 2011

A356382 Even terms in A014567.

Original entry on oeis.org

2, 4, 8, 16, 32, 36, 50, 64, 98, 100, 128, 144, 242, 256, 324, 338, 392, 400, 484, 512, 576, 578, 676, 722, 784, 800, 900, 968, 1024, 1058, 1156, 1250, 1296, 1352, 1444, 1600, 1682, 1922, 1936, 2048, 2116, 2304, 2312, 2450, 2500, 2704, 2738, 2888, 2916, 3136, 3362, 3364
Offset: 1

Views

Author

Jianing Song, Aug 07 2022

Keywords

Comments

Even numbers k such that k and sigma(k) are coprime, sigma = A000203.
Each term is an even square or twice a square.
No term can be of the form 18*k^2 since sigma(m) is divisible by 3 if m is twice a square (cf. A065766).

Examples

			3362 is a term since 3362 and sigma(3362) = 5169 are coprime.
3364 is a term since 3364 and sigma(3364) = 6097 are coprime.
		

Crossrefs

Subsequence of A088827. Includes A000079 as a subsequence.
Equals {A356448(n)^2} U {2*A356449(n)^2} = {2*A356449(n)^2} U {4*A356451(n)^2}.

Programs

  • PARI
    isA356382(n) = !(n%2) && gcd(n, sigma(n))==1

A191432 Dispersion of ([n*x+1/x]), where x=sqrt(2) and [ ]=floor, by antidiagonals.

Original entry on oeis.org

1, 2, 5, 3, 7, 8, 4, 10, 12, 11, 6, 14, 17, 16, 15, 9, 20, 24, 23, 21, 18, 13, 28, 34, 33, 30, 26, 22, 19, 40, 48, 47, 43, 37, 31, 25, 27, 57, 68, 67, 61, 53, 44, 36, 29, 38, 81, 96, 95, 86, 75, 62, 51, 41, 32, 54, 115, 136, 135, 122, 106, 88, 72, 58, 45, 35, 77, 163, 193, 191, 173, 150, 125, 102, 82, 64, 50, 39
Offset: 1

Views

Author

Clark Kimberling, Jun 03 2011

Keywords

Comments

Background discussion: Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n)=(number of the row of D that contains n) is a fractal sequence.
Examples:
(1) s=A000040 (the primes), D=A114537, u=A114538.
(2) s=A022343 (without initial 0), D=A035513 (Wythoff array), u=A003603.
(3) s=A007067, D=A035506 (Stolarsky array), u=A133299.
More recent examples of dispersions: A191426-A191455.
Conjecture: It appears this sequence is related to the even numbers with odd abundance A088827. Looking at the table format if the columns represent the powers of 2 (starting at 2^1) and the rows represent the squares of odd numbers, then taking the product of a term's row and column gives the n-th term in A088827. Example: A088827(67) = (7^2) * (2^6) = 3136. - John Tyler Rascoe, Jul 12 2022

Examples

			Northwest corner:
   1    2    3    4    6    9
   5    7   10   14   20   28
   8   12   17   24   34   48
  11   16   23   33   47   67
  15   21   30   43   61   86
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of increasing sequence f[n] *)
    r = 40; r1 = 12;  (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12;  (* c=# cols of T, c1=# cols to show *)
    x = Sqrt[2];
    f[n_] := Floor[n*x + 1/x] (* f(n) is complement of column 1 *)
    mex[list_] :=  NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1,
      Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];  TableForm[
    Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191432 array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191432 sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011 *)
  • PARI
    s(n) = my(x=quadgen(8)); floor(n*x+1/x);  \\ A001953
    t(n) = floor((n+1/2)*(2+quadgen(8))); \\ A001954
    T(n, k) = my(x = t(n-1)); for (i=2, k, x = s(x);); x; \\ Michel Marcus, Jul 13 2022
Showing 1-10 of 11 results. Next