cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A016754 Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, 4225, 4489, 4761, 5041, 5329, 5625, 5929, 6241, 6561, 6889, 7225, 7569, 7921, 8281, 8649, 9025
Offset: 0

Views

Author

Keywords

Comments

The brown rat (rattus norwegicus) breeds very quickly. It can give birth to other rats 7 times a year, starting at the age of three months. The average number of pups is 8. The present sequence gives the total number of rats, when the intervals are 12/7 of a year and a young rat starts having offspring at 24/7 of a year. - Hans Isdahl, Jan 26 2008
Numbers n such that tau(n) is odd where tau(x) denotes the Ramanujan tau function (A000594). - Benoit Cloitre, May 01 2003
If Y is a fixed 2-subset of a (2n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Binomial transform of [1, 8, 8, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 8, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
All terms of this sequence are of the form 8k+1. For numbers 8k+1 which aren't squares see A138393. Numbers 8k+1 are squares iff k is a triangular number from A000217. And squares have form 4n(n+1)+1. - Artur Jasinski, Mar 27 2008
Sequence arises from reading the line from 1, in the direction 1, 25, ... and the line from 9, in the direction 9, 49, ..., in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
Equals the triangular numbers convolved with [1, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
First differences: A008590(n) = a(n) - a(n-1) for n>0. - Reinhard Zumkeller, Nov 08 2009
Central terms of the triangle in A176271; cf. A000466, A053755. - Reinhard Zumkeller, Apr 13 2010
Odd numbers with odd abundance. Odd numbers with even abundance are in A088828. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829. - Jaroslav Krizek, May 07 2011
Appear as numerators in the non-simple continued fraction expansion of Pi-3: Pi-3 = K_{k>=1} (1-2*k)^2/6 = 1/(6+9/(6+25/(6+49/(6+...)))), see also the comment in A007509. - Alexander R. Povolotsky, Oct 12 2011
Ulam's spiral (SE spoke). - Robert G. Wilson v, Oct 31 2011
All terms end in 1, 5 or 9. Modulo 100, all terms are among { 1, 9, 21, 25, 29, 41, 49, 61, 69, 81, 89 }. - M. F. Hasler, Mar 19 2012
Right edge of both triangles A214604 and A214661: a(n) = A214604(n+1,n+1) = A214661(n+1,n+1). - Reinhard Zumkeller, Jul 25 2012
Also: Odd numbers which have an odd sum of divisors (= sigma = A000203). - M. F. Hasler, Feb 23 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective even leg b (A231100); sequence gives values c-b, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
For n>1 a(n) is twice the area of the irregular quadrilateral created by the points ((n-2)*(n-1),(n-1)*n/2), ((n-1)*n/2,n*(n+1)/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+2)*(n+3)/2,(n+1)*(n+2)/2). - J. M. Bergot, May 27 2014
Number of pairs (x, y) of Z^2, such that max(abs(x), abs(y)) <= n. - Michel Marcus, Nov 28 2014
Except for a(1)=4, the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 737", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
a(n) is the sum of 2n+1 consecutive numbers, the first of which is n+1. - Ivan N. Ianakiev, Dec 21 2016
a(n) is the number of 2 X 2 matrices with all elements in {0..n} with determinant = 2*permanent. - Indranil Ghosh, Dec 25 2016
Engel expansion of Pi*StruveL_0(1)/2 where StruveL_0(1) is A197037. - Benedict W. J. Irwin, Jun 21 2018
Consider all Pythagorean triples (X,Y,Z=Y+1) ordered by increasing Z; the segments on the hypotenuse {p = a(n)/A001844(n), q = A060300(n)/A001844(n) = A001844(n) - p} and their ratio p/q = a(n)/A060300(n) are irreducible fractions in Q\Z. X values are A005408, Y values are A046092, Z values are A001844. - Ralf Steiner, Feb 25 2020
a(n) is the number of large or small squares that are used to tile primitive squares of type 2 (A344332). - Bernard Schott, Jun 03 2021
Also, positive odd integers with an odd number of odd divisors (for similar sequence with 'even', see A348005). - Bernard Schott, Nov 21 2021
a(n) is the least odd number k = x + y, with 0 < x < y, such that there are n distinct pairs (x,y) for which x*y/k is an integer; for example, a(2) = 25 and the two corresponding pairs are (5,20) and (10,15). The similar sequence with 'even' is A016742 (see Comment of Jan 26 2018). - Bernard Schott, Feb 24 2023
From Peter Bala, Jan 03 2024: (Start)
The sequence terms are the exponents of q in the series expansions of the following infinite products:
1) q*Product_{n >= 1} (1 - q^(16*n))*(1 + q^(8*n)) = q + q^9 + q^25 + q^49 + q^81 + q^121 + q^169 + ....
2) q*Product_{n >= 1} (1 + q^(16*n))*(1 - q^(8*n)) = q - q^9 - q^25 + q^49 + q^81 - q^121 - q^169 + + - - ....
3) q*Product_{n >= 1} (1 - q^(8*n))^3 = q - 3*q^9 + 5*q^25 - 7*q^49 + 9*q^81 - 11*q^121 + 13*q^169 - + ....
4) q*Product_{n >= 1} ( (1 + q^(8*n))*(1 - q^(16*n))/(1 + q^(16*n)) )^3 = q + 3*q^9 - 5*q^25 - 7*q^49 + 9*q^81 + 11*q^121 - 13*q^169 - 15*q^225 + + - - .... (End)

References

  • L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.

Crossrefs

Cf. A000447 (partial sums).
Cf. A348005, A379481 [= a(A048673(n)-1)].
Partial sums of A022144.
Positions of odd terms in A341528.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 1 + Sum_{i=1..n} 8*i = 1 + 8*A000217(n). - Xavier Acloque, Jan 21 2003; Zak Seidov, May 07 2006; Robert G. Wilson v, Dec 29 2010
O.g.f.: (1+6*x+x^2)/(1-x)^3. - R. J. Mathar, Jan 11 2008
a(n) = 4*n*(n + 1) + 1 = 4*n^2 + 4*n + 1. - Artur Jasinski, Mar 27 2008
a(n) = A061038(2+4n). - Paul Curtz, Oct 26 2008
Sum_{n>=0} 1/a(n) = Pi^2/8 = A111003. - Jaume Oliver Lafont, Mar 07 2009
a(n) = A000290(A005408(n)). - Reinhard Zumkeller, Nov 08 2009
a(n) = a(n-1) + 8*n with n>0, a(0)=1. - Vincenzo Librandi, Aug 01 2010
a(n) = A033951(n) + n. - Reinhard Zumkeller, May 17 2009
a(n) = A033996(n) + 1. - Omar E. Pol, Oct 03 2011
a(n) = (A005408(n))^2. - Zak Seidov, Nov 29 2011
From George F. Johnson, Sep 05 2012: (Start)
a(n+1) = a(n) + 4 + 4*sqrt(a(n)).
a(n-1) = a(n) + 4 - 4*sqrt(a(n)).
a(n+1) = 2*a(n) - a(n-1) + 8.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2).
(a(n+1) - a(n-1))/8 = sqrt(a(n)).
a(n+1)*a(n-1) = (a(n)-4)^2.
a(n) = 2*A046092(n) + 1 = 2*A001844(n) - 1 = A046092(n) + A001844(n).
Limit_{n -> oo} a(n)/a(n-1) = 1. (End)
a(n) = binomial(2*n+2,2) + binomial(2*n+1,2). - John Molokach, Jul 12 2013
E.g.f.: (1 + 8*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, May 23 2016
a(n) = A101321(8,n). - R. J. Mathar, Jul 28 2016
Product_{n>=1} A033996(n)/a(n) = Pi/4. - Daniel Suteu, Dec 25 2016
a(n) = A014105(n) + A000384(n+1). - Bruce J. Nicholson, Nov 11 2017
a(n) = A003215(n) + A002378(n). - Klaus Purath, Jun 09 2020
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=0} a(n)/n! = 13*e.
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = 3/e. (End)
Sum_{n>=0} (-1)^n/a(n) = A006752. - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi/4 (A003881). (End)
From Leo Tavares, Nov 24 2021: (Start)
a(n) = A014634(n) - A002943(n). See Diamond Triangles illustration.
a(n) = A003154(n+1) - A046092(n). See Diamond Stars illustration. (End)
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 ))))).
3/2 - 2*log(2) = Sum_{k >= 1} 1/(k*a(k)*a(k-1)) = 1/(9 - 3/(17 - 60/(33 - 315/(57 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*2^2 - ... ))))).
Row 2 of A142992. (End)
From Peter Bala, Mar 26 2024: (Start)
8*a(n) = (2*n + 1)*(a(n+1) - a(n-1)).
Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1/2 - Pi/8 = 1/(9 + (1*3)/(8 + (3*5)/(8 + ... + (4*n^2 - 1)/(8 + ... )))). For the continued fraction use Lorentzen and Waadeland, p. 586, equation 4.7.9 with n = 1. Cf. A057813. (End)

Extensions

Additional description from Terrel Trotter, Jr., Apr 06 2002

A088828 Nonsquare positive odd numbers.

Original entry on oeis.org

3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

Odd numbers with even abundance: primes and some composites too.
Odd numbers with odd abundance are in A016754. Even numbers with odd abundance are in A088827. Even numbers with even abundance are in A088829.
Or, odd numbers without the squares. - Gerald Hillier, Apr 12 2009

Examples

			n = p prime, abundance = 1 - p = even and negative;
n = 21, sigma = 1 + 3 + 7 + 21 = 32, abundance = 32 - 42 = -20.
		

Crossrefs

Programs

  • Magma
    [ n: n in [1..140 by 2] | IsEven(SumOfDivisors(n)-2*n) ]; // Klaus Brockhaus, Apr 15 2009
    
  • Mathematica
    Do[s=DivisorSigma[1, n]-2*n; If[ !OddQ[s]&&OddQ[n], Print[{n, s}]], {n, 1, 1000}]
    Select[Range[1, 500, 2], EvenQ[DivisorSigma[1, #] - 2 #] &] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
  • PARI
    isok(n) = (n>0) && (n % 2) && ! issquare(n); \\ Michel Marcus, Aug 28 2013
    
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A088828_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:not is_square(n),count(max(startvalue+(startvalue&1^1),1),2))
    A088828_list = list(islice(A088828_gen(),30)) # Chai Wah Wu, Jul 06 2023
    
  • Python
    from math import isqrt
    def A088828(n): return (s:=(m:=isqrt(k:=(n<<1)-1))+(k-m*(m+1)>=1))+k+(s&1) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = 2*n + s - ((s+1) mod 2) where s = round(sqrt(2*n-1)). - Gerald Hillier, Apr 15 2009
A005408 SETMINUS A016754. - R. J. Mathar, Jun 16 2018
a(n) = 2*(n+h) + 1 where h = floor((1/4)*(sqrt(8*n) - 1)) is the largest value such that A014105(h) < n. - John Tyler Rascoe, Jul 05 2022

Extensions

Entry revised by N. J. A. Sloane, Jan 31 2014 at the suggestion of Omar E. Pol

A088827 Even numbers with odd abundance: even squares or two times squares.

Original entry on oeis.org

2, 4, 8, 16, 18, 32, 36, 50, 64, 72, 98, 100, 128, 144, 162, 196, 200, 242, 256, 288, 324, 338, 392, 400, 450, 484, 512, 576, 578, 648, 676, 722, 784, 800, 882, 900, 968, 1024, 1058, 1152, 1156, 1250, 1296, 1352, 1444, 1458, 1568, 1600, 1682, 1764, 1800, 1922
Offset: 1

Views

Author

Labos Elemer, Oct 28 2003

Keywords

Comments

Sigma(k)-2k is odd means that sigma(k) is also odd.
Odd numbers with odd abundance are in A016754. Odd numbers with even abundance are in A088828. Even numbers with even abundance are in A088829.

Examples

			From _Michael De Vlieger_, May 14 2017: (Start)
4 is a term since it is even and the sum of its divisors {1,2,4} = 7 - 2(4) = -1 is odd. It is an even square.
18 is a term since it is even and the sum of its divisors {1,2,3,6,9,18} = 39 - 2(18) = 3 is odd. It is 2 times a square, i.e., 2(9). (End)
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[1, n]-2*n; If[OddQ[s]&&!OddQ[n], Print[{n, s}]], {n, 1, 1000}]
    (* Second program: *)
    Select[Range[2, 2000, 2], OddQ[DivisorSigma[1, #] - 2 #] &] (* Michael De Vlieger, May 14 2017 *)
  • Python
    from itertools import count, islice
    from sympy.ntheory.primetest import is_square
    def A088827_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:is_square(n) or is_square(n>>1),count(max(startvalue+(startvalue&1),2),2))
    A088827_list = list(islice(A088827_gen(),30)) # Chai Wah Wu, Jul 06 2023

Formula

Conjecture: a(n) = ((2*r) + 1)^2 * 2^(c+1) where r and c are the corresponding row and column of n in the table format of A191432, where the first row and column are 0. - John Tyler Rascoe, Jul 12 2022
Sum_{n>=1} 1/a(n) = Pi^2/8 (A111003). - Amiram Eldar, Jul 09 2023

A334748 Let p be the smallest odd prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller odd primes.

Original entry on oeis.org

3, 6, 5, 12, 15, 10, 21, 24, 27, 30, 33, 20, 39, 42, 7, 48, 51, 54, 57, 60, 35, 66, 69, 40, 75, 78, 45, 84, 87, 14, 93, 96, 55, 102, 105, 108, 111, 114, 65, 120, 123, 70, 129, 132, 135, 138, 141, 80, 147, 150, 85, 156, 159, 90, 165, 168, 95, 174, 177, 28, 183, 186, 189
Offset: 1

Views

Author

Peter Munn, May 09 2020

Keywords

Comments

A permutation of A028983.
A007417 (which has asymptotic density 3/4) lists index n such that a(n) = 3n. The sequence maps the terms of A007417 1:1 onto A145204\{0}, defining a bijection between them.
Similarly, bijections are defined from the odd numbers (A005408) to the nonsquare odd numbers (A088828), from the positive even numbers (A299174) to A088829, from A003159 to the nonsquares in A003159, and from A325424 to the nonsquares in A036668. The latter two bijections are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.

Examples

			84 = 21*4 has squarefree part 21 (and square part 4). The smallest odd prime absent from 21 = 3*7 is 5 and the product of all smaller odd primes is 3. So a(84) = 84*5/3 = 140.
		

Crossrefs

Permutation of A028983.
Row 3, and therefore column 3, of A331590. Cf. A334747 (row 2).
A007913, A034386, A225546, A284723 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A003961, A019565, A070826; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016051, A145204\{0}, A329575.
Bijections are defined that relate to A003159, A005408, A007417, A036668, A088828, A088829, A299174, A325424.

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=3, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * p / (A034386(p-1)/2), where p = A284723(A007913(n)).
a(n) = A334747(A334747(n)).
a(n) = A331590(3, n) = A225546(4 * A225546(n)).
a(2*n) = 2 * a(n).
a(A019565(n)) = A019565(n+2).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = A003961(A334747(n)).
a(A070826(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 2.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A007417(n)) = A145204(n+1) = 3 * A007417(n).

A295076 Numbers n > 1 such that n and sigma(n) have the same smallest prime factor.

Original entry on oeis.org

6, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138, 140, 142, 146, 148
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2017

Keywords

Comments

Supersequence of A088829; this sequence contains also odd numbers: 441, 1521, 3249, 3969, 8649, 11025, ...
Even terms of A000396 (perfect numbers) are a subsequence.
Subsequence of A295078.
Numbers n such that A020639(n) = A020639(sigma(n)).
Numbers n such that A020639(n) = A071189(n).

Examples

			30 = 2*3*5 and sigma(30) = 72 = 2^3*3^2 hence 30 is in the sequence.
		

Crossrefs

Cf. A071834 (numbers n such that n and sigma(n) have the same largest prime factor).

Programs

  • Magma
    [n: n in [2..1000000] | Minimum(PrimeDivisors(SumOfDivisors(n))) eq Minimum(PrimeDivisors(n))]
    
  • Maple
    select(t -> min(numtheory:-factorset(t))=min(numtheory:-factorset(numtheory:-sigma(t))), [$2..1000]); # Robert Israel, Nov 14 2017
  • Mathematica
    Rest@ Select[Range@ 150, SameQ @@ Map[FactorInteger[#][[1, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
  • PARI
    isok(n) = factor(n)[1,1] == factor(sigma(n))[1,1]; \\ Michel Marcus, Nov 14 2017

Extensions

Added n>1 to definition - N. J. A. Sloane, Feb 03 2018
Showing 1-5 of 5 results.