cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A225546 Tek's flip: Write n as the product of distinct factors of the form prime(i)^(2^(j-1)) with i and j integers, and replace each such factor with prime(j)^(2^(i-1)).

Original entry on oeis.org

1, 2, 4, 3, 16, 8, 256, 6, 9, 32, 65536, 12, 4294967296, 512, 64, 5, 18446744073709551616, 18, 340282366920938463463374607431768211456, 48, 1024, 131072, 115792089237316195423570985008687907853269984665640564039457584007913129639936, 24, 81, 8589934592, 36, 768
Offset: 1

Views

Author

Paul Tek, May 10 2013

Keywords

Comments

This is a multiplicative self-inverse permutation of the integers.
A225547 gives the fixed points.
From Antti Karttunen and Peter Munn, Feb 02 2020: (Start)
This sequence operates on the Fermi-Dirac factors of a number. As arranged in array form, in A329050, this sequence reflects these factors about the main diagonal of the array, substituting A329050[j,i] for A329050[i,j], and this results in many relationships including significant homomorphisms.
This sequence provides a relationship between the operations of squaring and prime shift (A003961) because each successive column of the A329050 array is the square of the previous column, and each successive row is the prime shift of the previous row.
A329050 gives examples of how significant sets of numbers can be formed by choosing their factors in relation to rows and/or columns. This sequence therefore maps equivalent derived sets by exchanging rows and columns. Thus odd numbers are exchanged for squares, squarefree numbers for powers of 2 etc.
Alternative construction: For n > 1, form a vector v of length A299090(n), where each element v[i] for i=1..A299090(n) is a product of those distinct prime factors p(i) of n whose exponent e(i) has the bit (i-1) "on", or 1 (as an empty product) if no such exponents are present. a(n) is then Product_{i=1..A299090(n)} A000040(i)^A048675(v[i]). Note that because each element of vector v is squarefree, it means that each exponent A048675(v[i]) present in the product is a "submask" (not all necessarily proper) of the binary string A087207(n).
This permutation effects the following mappings:
A000035(a(n)) = A010052(n), A010052(a(n)) = A000035(n). [Odd numbers <-> Squares]
A008966(a(n)) = A209229(n), A209229(a(n)) = A008966(n). [Squarefree numbers <-> Powers of 2]
(End)
From Antti Karttunen, Jul 08 2020: (Start)
Moreover, we see also that this sequence maps between A016825 (Numbers of the form 4k+2) and A001105 (2*squares) as well as between A008586 (Multiples of 4) and A028983 (Numbers with even sum of the divisors).
(End)

Examples

			  7744  = prime(1)^2^(2-1)*prime(1)^2^(3-1)*prime(5)^2^(2-1).
a(7744) = prime(2)^2^(1-1)*prime(3)^2^(1-1)*prime(2)^2^(5-1) = 645700815.
		

Crossrefs

Cf. A225547 (fixed points) and the subsequences listed there.
Transposes A329050, A329332.
An automorphism of positive integers under the binary operations A059895, A059896, A059897, A306697, A329329.
An automorphism of A059897 subgroups: A000379, A003159, A016754, A122132.
Permutes lists where membership is determined by number of Fermi-Dirac factors: A000028, A050376, A176525, A268388.
Sequences f that satisfy f(a(n)) = f(n): A048675, A064179, A064547, A097248, A302777, A331592.
Pairs of sequences (f,g) that satisfy a(f(n)) = g(a(n)): (A000265,A008833), (A000290,A003961), (A005843,A334747), (A006519,A007913), (A008586,A334748).
Pairs of sequences (f,g) that satisfy a(f(n)) = g(n), possibly with offset change: (A000040,A001146), (A000079,A019565).
Pairs of sequences (f,g) that satisfy f(a(n)) = g(n), possibly with offset change: (A000035, A010052), (A008966, A209229), (A007814, A248663), (A061395, A299090), (A087207, A267116), (A225569, A227291).
Cf. A331287 [= gcd(a(n),n)].
Cf. A331288 [= min(a(n),n)], see also A331301.
Cf. A331309 [= A000005(a(n)), number of divisors].
Cf. A331590 [= a(a(n)*a(n))].
Cf. A331591 [= A001221(a(n)), number of distinct prime factors], see also A331593.
Cf. A331740 [= A001222(a(n)), number of prime factors with multiplicity].
Cf. A331733 [= A000203(a(n)), sum of divisors].
Cf. A331734 [= A033879(a(n)), deficiency].
Cf. A331735 [= A009194(a(n))].
Cf. A331736 [= A000265(a(n)) = a(A008833(n)), largest odd divisor].
Cf. A335914 [= A038040(a(n))].
A self-inverse isomorphism between pairs of A059897 subgroups: (A000079,A005117), (A000244,A062503), (A000290\{0},A005408), (A000302,A056911), (A000351,A113849 U {1}), (A000400,A062838), (A001651,A252895), (A003586,A046100), (A007310,A000583), (A011557,A113850 U {1}), (A028982,A042968), (A053165,A065331), (A262675,A268390).
A bijection between pairs of sets: (A001248,A011764), (A007283,A133466), (A016825, A001105), (A008586, A028983).
Cf. also A336321, A336322 (compositions with another involution, A122111).

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &, 28] (* Michael De Vlieger, Jan 21 2020 *)
  • PARI
    A019565(n) = factorback(vecextract(primes(logint(n+!n, 2)+1), n));
    a(n) = {my(f=factor(n)); for (i=1, #f~, my(p=f[i,1]); f[i,1] = A019565(f[i,2]); f[i,2] = 2^(primepi(p)-1);); factorback(f);} \\ Michel Marcus, Nov 29 2019
    
  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A225546(n) = if(1==n,1,my(f=factor(n),u=#binary(vecmax(f[, 2])),prods=vector(u,x,1),m=1,e); for(i=1,u,for(k=1,#f~, if(bitand(f[k,2],m),prods[i] *= f[k,1])); m<<=1); prod(i=1,u,prime(i)^A048675(prods[i]))); \\ Antti Karttunen, Feb 02 2020
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A225546(n): return prod(prod(prime(i) for i, v in enumerate(bin(e)[:1:-1],1) if v == '1')**(1<Chai Wah Wu, Mar 17 2023

Formula

Multiplicative, with a(prime(i)^j) = A019565(j)^A000079(i-1).
a(prime(i)) = 2^(2^(i-1)).
From Antti Karttunen and Peter Munn, Feb 06 2020: (Start)
a(A329050(n,k)) = A329050(k,n).
a(A329332(n,k)) = A329332(k,n).
Equivalently, a(A019565(n)^k) = A019565(k)^n. If n = 1, this gives a(2^k) = A019565(k).
a(A059897(n,k)) = A059897(a(n), a(k)).
The previous formula implies a(n*k) = a(n) * a(k) if A059895(n,k) = 1.
a(A000040(n)) = A001146(n-1); a(A001146(n)) = A000040(n+1).
a(A000290(a(n))) = A003961(n); a(A003961(a(n))) = A000290(n) = n^2.
a(A000265(a(n))) = A008833(n); a(A008833(a(n))) = A000265(n).
a(A006519(a(n))) = A007913(n); a(A007913(a(n))) = A006519(n).
A007814(a(n)) = A248663(n); A248663(a(n)) = A007814(n).
A048675(a(n)) = A048675(n) and A048675(a(2^k * n)) = A048675(2^k * a(n)) = k + A048675(a(n)).
(End)
From Antti Karttunen and Peter Munn, Jul 08 2020: (Start)
For all n >= 1, a(2n) = A334747(a(n)).
In particular, for n = A003159(m), m >= 1, a(2n) = 2*a(n). [Note that A003159 includes all odd numbers]
(End)

Extensions

Name edited by Peter Munn, Feb 14 2020
"Tek's flip" prepended to the name by Antti Karttunen, Jul 08 2020

A028983 Numbers whose sum of divisors is even.

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82
Offset: 1

Views

Author

Keywords

Comments

The even terms of this sequence are the even terms appearing in A178910. [Edited by M. F. Hasler, Oct 02 2014]
A071324(a(n)) is even. - Reinhard Zumkeller, Jul 03 2008
Sigma(a(n)) = A000203(a(n)) = A152678(n). - Jaroslav Krizek, Oct 06 2009
A083207 is a subsequence. - Reinhard Zumkeller, Jul 19 2010
Numbers k such that the number of odd divisors of k (A001227) is even. - Omar E. Pol, Apr 04 2016
Numbers k such that the sum of odd divisors of k (A000593) is even. - Omar E. Pol, Jul 05 2016
Numbers with a squarefree part greater than 2. - Peter Munn, Apr 26 2020
Equivalently, numbers whose odd part is nonsquare. Compare with the numbers whose square part is even (i.e., nonodd): these are the positive multiples of 4, A008586\{0}, and A225546 provides a self-inverse bijection between the two sets. - Peter Munn, Jul 19 2020
Also numbers whose reversed prime indices have alternating product > 1, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). Also Heinz numbers of the partitions counted by A347448. - Gus Wiseman, Oct 29 2021
Numbers whose number of middle divisors is not odd (cf. A067742). - Omar E. Pol, Aug 02 2022

Crossrefs

The complement is A028982 = A000290 U A001105.
Subsequences: A083207, A091067, A145204\{0}, A225838, A225858.
Cf. A334748 (a permutation).
Related to A008586 via A225546.
Ranks the partitions counted by A347448, complement A119620.

Programs

  • Mathematica
    Select[Range[82],EvenQ[DivisorSigma[1,#]]&] (* Jayanta Basu, Jun 05 2013 *)
  • PARI
    is(n)=!issquare(n)&&!issquare(n/2) \\ Charles R Greathouse IV, Jan 11 2013
    
  • Python
    from math import isqrt
    def A028983(n):
        def f(x): return n-1+isqrt(x)+isqrt(x>>1)
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 22 2024

Formula

a(n) ~ n. - Charles R Greathouse IV, Jan 11 2013
a(n) = n + (1 + sqrt(2)/2)*sqrt(n) + O(1). - Charles R Greathouse IV, Sep 01 2015
A007913(a(n)) > 2. - Peter Munn, May 05 2020

A036668 Hati numbers: of form 2^i*3^j*k, i+j even, (k,6)=1.

Original entry on oeis.org

1, 4, 5, 6, 7, 9, 11, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 30, 31, 35, 36, 37, 41, 42, 43, 44, 45, 47, 49, 52, 53, 54, 55, 59, 61, 63, 64, 65, 66, 67, 68, 71, 73, 76, 77, 78, 79, 80, 81, 83, 85, 89, 91, 92, 95, 96, 97, 99, 100, 101, 102, 103, 107
Offset: 1

Views

Author

N. J. A. Sloane, Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)

Keywords

Comments

If n appears then 2n and 3n do not. - Benoit Cloitre, Jun 13 2002
Closed under multiplication. Each term is a product of a unique subset of {6} U A050376 \ {2,3}. - Peter Munn, Sep 14 2019

Crossrefs

Cf. A003159, A007310, A014601, A036667, A050376, A052330, A325424 (complement), A325498 (first differences), A373136 (characteristic function).
Positions of 0's in A182582.
Subsequences: A084087, A339690, A352272, A352273.

Programs

  • Maple
    N:= 1000: # to get all terms up to N
    A:= {seq(2^i,i=0..ilog2(N))}:
    Ae,Ao:= selectremove(issqr,A):
    Be:= map(t -> seq(t*9^j, j=0 .. floor(log[9](N/t))),Ae):
    Bo:= map(t -> seq(t*3*9^j,j=0..floor(log[9](N/(3*t)))),Ao):
    B:= Be union Bo:
    C1:= map(t -> seq(t*(6*i+1),i=0..floor((N/t -1)/6)),B):
    C2:= map(t -> seq(t*(6*i+5),i=0..floor((N/t - 5)/6)),B):
    A036668:= C1 union C2; # Robert Israel, May 09 2014
  • Mathematica
    a = {1}; Do[AppendTo[a, NestWhile[# + 1 &, Last[a] + 1,
    Apply[Or, Map[MemberQ[a, #] &, Select[Flatten[{#/3, #/2}],
    IntegerQ]]] &]], {150}]; a  (* A036668 *)
    (* Peter J. C. Moses, Apr 23 2019 *)
  • PARI
    twos(n) = {local(r,m);r=0;m=n;while(m%2==0,m=m/2;r++);r}
    threes(n) = {local(r,m);r=0;m=n;while(m%3==0,m=m/3;r++);r}
    isA036668(n) = (twos(n)+threes(n))%2==0 \\ Michael B. Porter, Mar 16 2010
    
  • PARI
    is(n)=(valuation(n,2)+valuation(n,3))%2==0 \\ Charles R Greathouse IV, Sep 10 2015
    
  • PARI
    list(lim)=my(v=List(),N);for(n=0,logint(lim\=1,3),N=if(n%2,2*3^n,3^n); while(N<=lim, forstep(k=N,lim,[4*N,2*N], listput(v,k)); N<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 10 2015
    
  • Python
    from itertools import count
    def A036668(n):
        def f(x):
            c = n+x
            for i in range(x.bit_length()+1):
                i2 = 1<x:
                        break
                    m = x//k
                    c -= (m-1)//6+(m-5)//6+2
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jan 28 2025

Formula

a(n) = 12/7 * n + O(log^2 n). - Charles R Greathouse IV, Sep 10 2015
{a(n)} = A052330({A014601(n)}), where {a(n)} denotes the set of integers in the sequence. - Peter Munn, Sep 14 2019

Extensions

Offset changed by Chai Wah Wu, Jan 28 2025

A334747 Let p be the smallest prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller primes.

Original entry on oeis.org

2, 3, 6, 8, 10, 5, 14, 12, 18, 15, 22, 24, 26, 21, 30, 32, 34, 27, 38, 40, 42, 33, 46, 20, 50, 39, 54, 56, 58, 7, 62, 48, 66, 51, 70, 72, 74, 57, 78, 60, 82, 35, 86, 88, 90, 69, 94, 96, 98, 75, 102, 104, 106, 45, 110, 84, 114, 87, 118, 120, 122, 93, 126, 128, 130, 55
Offset: 1

Author

Peter Munn, May 09 2020

Keywords

Comments

A bijection from the positive integers to the nonsquares, A000037.
A003159 (which has asymptotic density 2/3) lists index n such that a(n) = 2n. The sequence maps the terms of A003159 1:1 onto A036554, defining a bijection between them.
Similarly, bijections are defined from A007417 to A325424, from A325424 to A145204\{0}, and from the first in each of the following pairs to the nonsquare integers in the second: (A145204\{0}, A036668), (A036668, A007417), (A036554, A003159), (A332820, A332821), (A332821, A332822), (A332822, A332820). Note that many of these are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.
Starting from 1, and iterating the sequence as a(1) = 2, a(2) = 3, a(3) = 6, a(6) = 5, a(5) = 10, etc., runs through the squarefree numbers in the order they appear in A019565. - Antti Karttunen, Jun 08 2020

Examples

			168 = 42*4 has squarefree part 42 (and square part 4). The smallest prime absent from 42 = 2*3*7 is 5 and the product of all smaller primes is 2*3 = 6. So a(168) = 168*5/6 = 140.
		

Crossrefs

Permutation of A000037.
Row 2, and therefore column 2, of A331590. Cf. A334748 (row 3).
A007913, A034386, A053669, A225546 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A002110, A003961, A019565; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016825 (odd bisection), A036554, A329575.
Bijections are defined that relate to A003159, A007417, A036668, A145204, A325424, A332820, A332821, A332822.
Cf. also binary trees A334860, A334866 and A334870 (a left inverse).

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=2, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * m / A034386(m-1), where m = A053669(A007913(n)).
a(n) = A331590(2, n) = A225546(2 * A225546(n)).
a(A019565(n)) = A019565(n+1).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = 2 * A003961(n).
a(2 * A003961(n)) = A003961(a(n)).
a(A002110(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 1.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A003159(n)) = A036554(n) = 2 * A003159(n).
A334870(a(n)) = n. - Antti Karttunen, Jun 08 2020

A332382 If n = Sum (2^e_k) then a(n) = Product (prime(e_k + 2)).

Original entry on oeis.org

1, 3, 5, 15, 7, 21, 35, 105, 11, 33, 55, 165, 77, 231, 385, 1155, 13, 39, 65, 195, 91, 273, 455, 1365, 143, 429, 715, 2145, 1001, 3003, 5005, 15015, 17, 51, 85, 255, 119, 357, 595, 1785, 187, 561, 935, 2805, 1309, 3927, 6545, 19635, 221, 663, 1105, 3315, 1547, 4641, 7735, 23205
Offset: 0

Author

Ilya Gutkovskiy, Feb 10 2020

Keywords

Comments

Permutation of odd squarefree numbers (A056911).
a(n) is the n-th power of 3 in the monoid defined in A331590. - Peter Munn, May 02 2020

Examples

			21 = 2^0 + 2^2 + 2^4 so a(21) = prime(2) * prime(4) * prime(6) = 3 * 7 * 13 = 273.
		

Crossrefs

Bisection of A019565.
A003961, A003987, A059897, A331590, A334748 are used to express relationship between terms of this sequence.

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i+1)^l[i], i=1..nops(l)))(convert(n, base, 2)):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 10 2020
  • Mathematica
    nmax = 55; CoefficientList[Series[Product[(1 + Prime[k + 2] x^(2^k)), {k, 0, Floor[Log[2, nmax]]}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := Prime[Floor[Log[2, n]] + 2] a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 55}]
  • PARI
    a(n) = my(b=Vecrev(binary(n))); prod(k=1, #b, if (b[k], prime(k+1), 1)); \\ Michel Marcus, Feb 10 2020

Formula

G.f.: Product_{k>=0} (1 + prime(k+2) * x^(2^k)).
a(0) = 1; a(n) = prime(floor(log_2(n)) + 2) * a(n - 2^floor(log_2(n))).
a(2^(k-1)-1) = A002110(k)/2 for k > 0.
From Peter Munn, May 02 2020: (Start)
a(2n) = A003961(a(n)).
a(2n+1) = 3 * a(2n).
a(n) = A225546(4^n).
a(n+k) = A331590(a(n), a(k)).
a(n XOR k) = A059897(a(n), a(k)), where XOR denotes bitwise exclusive-or, A003987.
A048675(a(n)) = 2n.
(End)
a(n+1) = A334748(a(n)). - Peter Munn, Mar 04 2022
Showing 1-5 of 5 results.