cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A113224 a(2n) = A002315(n), a(2n+1) = A082639(n+1).

Original entry on oeis.org

1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

From Paul D. Hanna, Oct 22 2005: (Start)
The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1.
Equals the self-convolution of integer sequence A113281. (End)
With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 19 2015
Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

Crossrefs

Programs

  • Magma
    [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{2,2,-2,-1},{1,2,7,16},30] (* Harvey P. Dale, Oct 10 2017 *)
  • Maxima
    a(n):=n*sum(sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k)*(1-(-1)^k)/(2*k),k,1,n); /* Vladimir Kruchinin, Apr 11 2011 */
    
  • PARI
    {a(n)=local(x=X+X*O(X^n));polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2),n,X)} \\ Paul D. Hanna
    

Formula

G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
a(n+2) - a(n+1) - a(n) = A100828(n+1).
a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - Vladimir Kruchinin, Apr 11 2011
a(n) = A001333(n+1) - A000035(n). - R. J. Mathar, Apr 12 2011
a(n) = floor((1+sqrt(2))^(n+1)/2). - Bruno Berselli, Feb 06 2013
From Peter Bala, Mar 19 2015: (Start)
a(n) = (1/2) * A129744(n+1).
exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = A105635(n-1) + A105635(n+1). - R. J. Mathar, Mar 23 2023

A113281 Self-convolution equals A113224.

Original entry on oeis.org

1, 1, 3, 5, 11, 23, 51, 113, 255, 579, 1325, 3047, 7039, 16319, 37951, 88489, 206799, 484255, 1135969, 2668951, 6279509, 14793169, 34889553, 82372723, 194664283, 460436551, 1089943229, 2582033519, 6120967411, 14519686915, 34463104999
Offset: 0

Views

Author

Paul D. Hanna, Oct 22 2005

Keywords

Comments

Convolution of bisections A113283 and A113284 yields A082639, which is a bisection of the self-convolution of this sequence. Terms of the logarithmic derivative A113282 are related to the self-convolution A113224 by: A113282(2*n) = A113224(2*n), A113282(4*n+1) = 3 + A113224(4*n+1), A113282(4*n+3) = 1 + A113224(4*n+3).

Crossrefs

Formula

G.f.: A(x) = ( (1+x^2)/(1-x^2)/(1-2*x-x^2) )^(1/2).
a(n) ~ (1 + sqrt(2))^(n + 1/2) / sqrt(2*Pi*n). - Vaclav Kotesovec, Oct 18 2020

A113225 a(2n) = A011900(n), a(2n+1) = A001109(n+1).

Original entry on oeis.org

1, 1, 3, 6, 15, 35, 85, 204, 493, 1189, 2871, 6930, 16731, 40391, 97513, 235416, 568345, 1372105, 3312555, 7997214, 19306983, 46611179, 112529341, 271669860, 655869061, 1583407981, 3822685023, 9228778026, 22280241075, 53789260175
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

a(n+1) - a(n) = A097075(n+1), a(n) + a(n+1) = A024537(n+1), a(n+2) - a(n+1) - a(n) = A105635(n+1).
For n >= 1, a(n) is also the edge cover number and edge cut count of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Also the independence number, Lovasz number, and Shannon capacity of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Floretion Algebra Multiplication Program, FAMP Code: -2jbasejseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

References

  • C. Dement, Floretion Integer Sequences (work in progress).

Crossrefs

Programs

  • Maple
    seq(iquo(fibonacci(n,2),1)-iquo(fibonacci(n,2),2),n=1..30); # Zerinvary Lajos, Apr 20 2008
    with(combinat):seq(ceil(fibonacci(n,2)/2), n=1..30); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Ceiling[Fibonacci[Range[20], 2]/2]
    Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand
    CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x]
    LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
  • PARI
    {a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* Michael Somos, Sep 09 2006 */

Formula

G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - Michael Somos, Sep 09 2006
G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
Diagonal sums of A119468. - Paul Barry, May 21 2006
a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - Eric W. Weisstein, Aug 01 2023
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Eric W. Weisstein, Aug 01 2023

A269499 Nontrivial integer solutions s to the equations Sum_{i} ((-1)^i)*binomial(m,i)*binomial(s-m,t-i) = 0 listed in increasing order.

Original entry on oeis.org

36, 66, 67, 98, 132, 177, 214, 289, 345, 465, 514, 576, 774, 932, 1029, 1219, 1252
Offset: 1

Views

Author

René Gy, Feb 28 2016

Keywords

Comments

A nontrivial integer solution s to the equations S(m,s,t) = Sum_{i} (((-1)^i)*binomial(m, i)*binomial(s - m, t - i)) = 0 is an integer s such that there exist integers m, t and 3 < m,t < s/2 such that S(m,s,t)=0 and m,s,t are not such that s=8*k+1 and t=2*k or m=2*k for some integer k.
S(m,s,t)=0 iff S(t,s,m)=0 iff S(s-m,s,t)=0 iff S(s-t,s,m)=0.
For t(resp. m)=2, s=(k+2)^2, m(resp. t)=((k + 2)*(k + 1))/2 is an infinite family of trivial solutions.
For t(resp. m)=3, s=3*k^2 + 8*k + 6, m(resp. t)=((k + 1)*(3*k + 2))/2 is another infinite family of trivial solutions.
For t(resp. m)=3, s=3*k^2 + 10*k + 9, m(resp. t)=((k + 1)*(3*k + 4))/2 is another infinite family of trivial solutions.
For t(resp. m)=2*k, s=8*k+1, m(resp. t)=4*k-1 is another infinite family of trivial solutions.
1521, 3193, 3362, 10882, 15043, 19600 also belong to the sequence, but the list has been checked to be complete only up to 1252.
A082639(k) (from k=4) is included in the sequence, because Sum_{i} (((-1)^i)*binomial(m(k), i)*binomial(s(k) - m, t(k) - i)) = 0, with s(k) = A082639(k) and m(k) = (g^k + g^(-k) - 10)/4 with g=3+2*sqrt(2) and t(k) = (h*g^k + 2 h^(-1)*g^(-k) - 4)/8 with h=2-2*sqrt(2). In other words, they are positive integers s of the form s=2*m+4 where (m,t) m>6 is any couple of positive integer solutions to the Diophantine equation m^2 - 4*m*t + 2*t^2 + 3*m - 8*t + 2 = 0 (there are infinitely many).
Nine such infinite subsequences for the present sequence are known.
The eight other similar subsequences are:
- positive integers s of the form s=2*m+5 where (m,t) is a solution to the Diophantine equation 5*m^2 - 10*m*t + 4*t^2 + 25*m - 26*t + 32 = 0 (producing 2 subsequences).
- positive integers s of the form s=2*m+5 where (m,t) m>10 is a solution to the Diophantine equation m^2 - 6*m*t + 4*t^2 + 3*m - 14*t + 2 = 0 (producing 2 subsequences).
- positive integers s of the form s=2*m+6 where (m,t) is a solution to the Diophantine equation m^2 - 8*m*t + 4*t^2 + 3*m - 24*t + 2 = 0 (producing 2 subsequences).
- positive integers s of the form s=2*m+8 where (m,t) m>7 is a solution to the Diophantine equation m^2 - 4*m*t + 2*t^2 + 7*m - 16*t + 16 = 0 (producing 2 subsequences).
A finite number of nontrivial (sporadic) terms of the sequence (not belonging to one of the above nine subsequences) are also known: 67, 289, 345, 1029, 1521, 10882, 15043, 48324.

Examples

			36=14+22 belongs to the sequence because Sum_{i=0..5} (((-1)^i)*binomial(14, i)*binomial(22,5-i)) = 0, both 5 and 14 are less than 18 and (14,36,5) is not in one of the above trivial families.
		

Crossrefs

Programs

  • Mathematica
    f[n_,m_,t_]:= Sum[(-1)^i*Binomial[m, i]*Binomial[n-m,t-i],{i,0,t}];lim=200; list={}; Do[ Do[Do [If[ Mod[n,8]==1&& t==2*Quotient[n,8],Continue,If[f[n,m,t]==0  ,AppendTo[list,n]]],{t,4,m}] ,{m,4,n/2-1}],{n,10,lim}];Print [Union [list]]
  • PARI
    isok(s) = {for (m=4, s\2-1, for (t=4, m, if (!(((s % 8) == 1) && (t == 2*(s\8))), if (sum(i=0, t, (-1)^i*binomial(m, i)*binomial(s-m, t-i)) == 0, return (1)););););} \\ Michel Marcus, Mar 01 2016

Extensions

a(16)-a(17) from Michel Marcus, Apr 04 2016

A105058 Expansion of g.f. (1+8*x-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

1, 13, 69, 409, 2377, 13861, 80781, 470833, 2744209, 15994429, 93222357, 543339721, 3166815961, 18457556053, 107578520349, 627013566049, 3654502875937, 21300003689581, 124145519261541, 723573111879673
Offset: 0

Views

Author

Creighton Dement, Apr 04 2005

Keywords

Comments

A floretion-generated sequence relating the squares of the numerators of continued fraction convergents to sqrt(2) to the squares of the denominators of continued fraction convergents to sqrt(2) (Pell numbers).
Floretion Algebra Multiplication Program, FAMP Code:
1dia[J]tesseq[ - .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e ]. Identity used: dia[I]tes + dia[J]tes + dia[K]tes = jes + fam + 3tes.

Crossrefs

Programs

  • Magma
    [Evaluate(DicksonSecond(2*n+1, -1), 2) -(-1)^n: n in [0..30]]; // G. C. Greubel, Aug 21 2022
    
  • Mathematica
    CoefficientList[ Series[(1+8x-x^2)/((1+x)(1-6x+x^2)), {x,0,30}], x] (* Robert G. Wilson v, Apr 06 2005 *)
    LinearRecurrence[{5,5,-1}, {1,13,69}, 30] (* Harvey P. Dale, Jun 03 2017 *)
  • SageMath
    [lucas_number1(2*n+2,2,-1) -(-1)^n for n in (0..30)] # G. C. Greubel, Aug 21 2022

Formula

a(n) = 2 * A001109(n+1) - (-1)^n.
G.f.: G(0)/(1-3*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
From G. C. Greubel, Aug 21 2022: (Start)
a(n) = A000129(2*n+2) - (-1)^n.
E.g.f.: exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (3/sqrt(2))*sinh(2*sqrt(2)*x)) - exp(-x). (End)
Showing 1-5 of 5 results.