A113282
Logarithmic derivative of the g.f. of A113281.
Original entry on oeis.org
1, 5, 7, 17, 41, 101, 239, 577, 1393, 3365, 8119, 19601, 47321, 114245, 275807, 665857, 1607521, 3880901, 9369319, 22619537, 54608393, 131836325, 318281039, 768398401, 1855077841, 4478554085, 10812186007, 26102926097, 63018038201
Offset: 0
Original entry on oeis.org
1, 3, 11, 51, 255, 1325, 7039, 37951, 206799, 1135969, 6279509, 34889553, 194664283, 1089943229, 6120967411, 34463104999, 194474062663, 1099571123853, 6227893795649, 35329149864161, 200691916063033, 1141489886332555
Offset: 0
Original entry on oeis.org
1, 5, 23, 113, 579, 3047, 16319, 88489, 484255, 2668951, 14793169, 82372723, 460436551, 2582033519, 14519686915, 81845419777, 462319557311, 2616334071987, 14830559353869, 84189874112659, 478559722392493
Offset: 0
Original entry on oeis.org
1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201
Offset: 0
-
[Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
-
a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
LinearRecurrence[{2,2,-2,-1},{1,2,7,16},30] (* Harvey P. Dale, Oct 10 2017 *)
-
a(n):=n*sum(sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k)*(1-(-1)^k)/(2*k),k,1,n); /* Vladimir Kruchinin, Apr 11 2011 */
-
{a(n)=local(x=X+X*O(X^n));polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2),n,X)} \\ Paul D. Hanna
Showing 1-4 of 4 results.
Comments