A088831 Numbers k whose abundance is 2: sigma(k) - 2k = 2.
20, 104, 464, 650, 1952, 130304, 522752, 8382464, 134193152, 549754241024, 8796086730752, 140737463189504, 144115187270549504
Offset: 1
Examples
Abundances of terms in A045768: {-1,2,2,2,2,2,2,2,2,2} so 1 is not here.
References
- Singh, S. Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker, p. 13, 1997.
- Guy, R. K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers." Sec. B2 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 45-53, 1994.
Links
- P. Hagis and G. L. Cohen, Some Results Concerning Quasiperfect Numbers, J. Austral. Math. Soc. Ser. A 33, 275-286, 1982.
- Tyler Ross, A Perfect Number Generalization and Some Euclid-Euler Type Results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.7.5. See p. 3.
Programs
-
Mathematica
Select[Range[10^6], DivisorSigma[1, #] - 2 # == 2 &] (* Michael De Vlieger, Feb 25 2017 *)
-
PARI
is(n)=sigma(n)==2*n+2 \\ Charles R Greathouse IV, Feb 21 2017
Formula
Solutions to sigma(x)-2*x = 2.
Extensions
One more term from Farideh Firoozbakht, Feb 23 2005
Comment and example corrected by T. D. Noe, May 10 2010
a(10) from Donovan Johnson, Dec 08 2011
a(11) from Giovanni Resta, Mar 29 2013
a(12) from Jud McCranie, Jun 18 2017
a(13) from Hiroaki Yamanouchi, Aug 23 2018
Comments