A088880 Number of different values of A000005(m) when A056239(m) is equal to n.
1, 1, 2, 2, 5, 4, 8, 6, 12, 10, 16, 13, 25, 18, 28, 25, 40, 32, 51, 40, 62, 51, 76, 62, 99, 77, 112, 92, 138, 109, 165, 130, 189, 153, 220, 178, 267, 208, 292, 240, 347, 274, 397, 315, 445, 361, 512, 407, 591, 464, 647, 524, 746, 588, 830, 664, 928, 746, 1034
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..222
Programs
-
Maple
multipl := proc(P,p) local a; a := 0 ; for el in P do if el = p then a := a+1 ; end if; end do; a ; end proc: A088880 := proc(n) local pro,pa,m,p; pro := {} ; for pa in combinat[partition](n) do m := 1 ; for p from 1 to n do m := m*(1+multipl(pa,p)) ; end do: pro := pro union {m} ; end do: nops(pro) ; end proc: # R. J. Mathar, Sep 27 2011 # second Maple program b:= proc(n, i) option remember; `if`(n=0 or i<2, {n+1}, {seq(map(p->p*(j+1), b(n-i*j, i-1))[], j=0..n/i)}) end: a:= n-> nops(b(n, n)): seq(a(n), n=0..50); # Alois P. Heinz, Aug 09 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i<2, {n+1}, Table[b[n-i*j, i-1]*(j+1), {j, 0, n/i}] // Flatten // Union]; a[n_] := Length[b[n, n]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Comments