cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088915 Nonnegative numbers of the form mn(m+n) with integers m,n.

Original entry on oeis.org

0, 2, 6, 12, 16, 20, 30, 42, 48, 54, 56, 70, 72, 84, 90, 96, 110, 120, 126, 128, 132, 156, 160, 162, 180, 182, 198, 210, 240, 250, 264, 272, 286, 306, 308, 324, 330, 336, 342, 380, 384, 390, 420, 432, 448, 462, 468, 506, 510, 520, 540, 546, 552, 560, 576, 600
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 29 2003

Keywords

Comments

These are the values of 3 X 3 Vandermonde determinants with integer entries.
Solutions (m,n) are integral points on the elliptic curve m*n*(m+n)=a(n). Entries with record number of solutions are: 2, 6, 30, 240, 6480, 18480, 147840, 3991680 Possibly not minimal: a(n)=988159766157083520000000 has 22 solutions a(n)=2880932262848640000 20 solutions Multiplication of a(n) by u^3 does not decrease the number of solutions. [From Georgi Guninski, Oct 25 2010]
Contribution from R. J. Mathar, Oct 24 2010: (Start)
Examples of entries with more than one representation are:
- 30 = 5*1*6 = 3*2*5,
- 240 = 15*1*16 = 10*2*12 = 6*4*10, 6480 = 80*1*81 = 45*3*48 = 30*6*36 = 18*12*30,
- 18408 = 77*3*80 = 66*4*70 = 48*7*55 = 30*14*44 = 22*20*42,
- 147840 = 384*1*385 = 154*6*160 = 132*8*140 = 96*14*110 = 60*28*88 = 44*40*84 (6 representations),
- 110270160 = 6*4284*4290 = 60*1326*1386 = 66*1260*1326 = 102*990*1092 = ... with 8 representations. (End)

Crossrefs

Cf. A121741.

Programs

  • Maple
    filter:= proc(n) local d,nd,x,y;
      d:= numtheory:-divisors(n);
      nd:= nops(d);
      for x from 1 to nd do
        for y from 1 to x do
          if d[x]*d[y]*(d[x]+d[y])=n then return true fi
      od od:
      false
    end proc:
    filter(0):= 0:
    select(filter, [seq(i,i=0..1000,2)]); # Robert Israel, Jul 24 2018
  • Mathematica
    Select[Range[0, 600], {} != FindInstance[m n (m + n) == # && n >= 0 && m >= 0, {m, n}, Integers, 1] &] (* Giovanni Resta, Jul 24 2018 *)
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A088915_gen(startvalue=0): # generator of terms >= startvalue
        for m in count(max(startvalue,0)):
            if m == 0:
                yield m
            else:
                for k in divisors(m,generator=True):
                    p, q = integer_nthroot(k**4+(k*m<<2),2)
                    if q and not (p-k**2)%(k<<1):
                        yield m
                        break
    A088915_list = list(islice(A088915_gen(),20)) # Chai Wah Wu, Jul 03 2023

Formula

a(n) = 2 * A121741(n-1) for n>=2.

Extensions

More terms from Hugo Pfoertner, Apr 10 2004