cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A121741 Dimensions of the irreducible representations of the simple Lie algebra of type A2 (equivalently, the group SL3) over the complex numbers, listed in increasing order.

Original entry on oeis.org

1, 3, 6, 8, 10, 15, 21, 24, 27, 28, 35, 36, 42, 45, 48, 55, 60, 63, 64, 66, 78, 80, 81, 90, 91, 99, 105, 120, 125, 132, 136, 143, 153, 154, 162, 165, 168, 171, 190, 192, 195, 210, 216, 224, 231, 234, 253, 255, 260, 270, 273, 276, 280, 288, 300
Offset: 1

Views

Author

Skip Garibaldi (skip(AT)member.ams.org), Aug 19 2006, Aug 23 2006

Keywords

Comments

We include "1" for the 1-dimensional trivial representation and we list each dimension once, ignoring the fact that inequivalent representations may have the same dimension.
Numbers of the form (x * (x - y) * (x - z) + y * (y - x) * (y - z) + z * (z - x) * (z - y)) / 18 with x + y + z = 0 and x * y * z > 0. - Michael Somos, Jun 26 2013
Positive numbers of the form (r-s)*r*(r+s) where r and s are integers, i.e., the product of three integers in arithmetic progression. In the expression above, set x = r-s, y = r+s, and z = -x-y. - Elliott Line, Dec 22 2020

References

  • N. Bourbaki, Lie groups and Lie algebras, Chapters 4-6, Springer, 2002.
  • J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1997.

Crossrefs

Programs

  • GAP
    # see program at sequence A121732
    
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A121741_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            for k in divisors(m<<1,generator=True):
                p, q = integer_nthroot(k**4+(k*m<<3),2)
                if q and not (p-k**2)%(k<<1):
                    yield m
                    break
    A121741_list = list(islice(A121741_gen(),20)) # Chai Wah Wu, Jul 03 2023

A369333 Positive integers m such that there exist distinct pairs (a,b) and (c,d) with a <= b, c <= d, and m = a*b*(c+d) = (a+b)*c*d.

Original entry on oeis.org

72, 144, 168, 360, 450, 480, 576, 864, 990, 1152, 1200, 1344, 1404, 1568, 1600, 1800, 1944, 2040, 2160, 2520, 2646, 2880, 3150, 3360, 3600, 3780, 3840, 3888, 4050, 4536, 4608, 4800, 5184, 5400, 5520, 5880, 5940, 6720, 6912, 7056, 7200, 7350, 7800, 7920, 7938, 8550, 8640, 8694, 8712, 8976, 9000, 9216, 9408, 9450, 9504, 9600, 9720, 10416, 10752, 11232, 11550, 11760
Offset: 1

Views

Author

Max Alekseyev, Jan 20 2024

Keywords

Comments

Such numbers m correspond to pairs of equal Egyptian fractions of length 2, since a*b*(c+d) = (a+b)*c*d is equivalent to 1/a + 1/b = 1/c + 1/d.
Numbers of the form t * k^3, where t is a term of A369334 and k is a positive integer.
If m belongs to this sequence, then so does m*k^3 for any positive integer k.

Examples

			72 is a term since 72 = 3*3*(2+6) = (3+3)*2*6.
		

Crossrefs

Programs

A371721 Numbers representable in the form u*v*(u+v) for u >= v >= 0 in at least two ways.

Original entry on oeis.org

0, 30, 210, 240, 390, 420, 462, 810, 880, 1008, 1020, 1056, 1122, 1190, 1482, 1680, 1920, 1980, 2070, 2100, 2310, 2970, 3120, 3360, 3696, 3750, 4160, 4290, 4320, 4830, 4914, 5460, 5670, 6006, 6090, 6270, 6480, 6630, 7040, 7380, 7440, 7770, 8064, 8160, 8190, 8448, 8580, 8976, 9120, 9240, 9520, 9900, 10290, 10530, 10640, 11340, 11856, 12210, 12432, 12474, 13110
Offset: 1

Views

Author

Max Alekseyev, Apr 04 2024

Keywords

Crossrefs

Subsequence of A088915.

Programs

  • Maple
    N:= 10^5: # for terms <= N
    V:= Vector(N):
    for v from 1 while 2*v^3 <= N do
      for u from v do
        x:= u*v*(u+v);
        if x > N then break fi;
        V[x]:= V[x]+1
    od od:
    [0,op(select(t -> V[t] >= 2, [$1..N]))]; # Robert Israel, Dec 15 2024

A363052 Integers m for which there exist positive integers j, k such that j*k*(j+k) = m^2.

Original entry on oeis.org

4, 18, 24, 32, 36, 50, 60, 108, 140, 144, 150, 192, 252, 256, 288, 300, 360, 392, 400, 480, 486, 500, 540, 588, 648, 780, 816, 864, 882, 900, 972, 1008, 1014, 1050, 1120, 1152, 1156, 1176, 1200, 1350, 1372, 1452, 1536, 1620, 1764, 1800, 1848, 2016, 2040, 2048, 2178
Offset: 1

Views

Author

Zhining Yang, May 15 2023

Keywords

Comments

All terms are even.

Examples

			24 is a term: j*k*(j+k) = 24^2 for j=2, k=16.
		

Crossrefs

Cf. A088915.

Programs

  • Mathematica
    Select[2*Range@500,
     Length@Select[Table[(Sqrt[b^2 + 4 #^2/b] - b)/2, {b, #}], IntegerQ] >
        0 &]
    Select[Union@
      Flatten@Table[Sqrt[a*b (a + b)], {a, 1, 80}, {b, a, 500}],
     IntegerQ[#] && # < 1000 &]
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot, divisors
    def A363052_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            for k in divisors(m**2,generator=True):
                p, q = integer_nthroot(k**4+(k*m**2<<2),2)
                if q:
                    a, b = divmod(p-k**2,k<<1)
                    if a > 0 and not b:
                        yield m
                        break
    A363052_list = list(islice(A363052_gen(),20)) # Chai Wah Wu, Jul 03 2023
Showing 1-4 of 4 results.