A088917 Central Delannoy numbers (mod 3); Characteristic function for Cantor set.
1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..59048
- Michael Coons and James Evans, A sequential view of self-similar measures, or, What the ghosts of Mahler and Cantor can teach us about dimension, arXiv:2011.10722 [math.NT], 2020. See Figure 2 p. 2.
- Eric Weisstein's World of Mathematics, Cantor Fractal.
- Index entries for characteristic functions
Crossrefs
Programs
-
Mathematica
Nest[ Flatten[# /. {0 -> {0, 0, 0}, 1 -> {1, 0, 1}}] &, {1}, 5] (* Or *) f[n_] := Mod[LegendreP[n, 3], 3]; Array[f, 111, 0] (* Or *) f[n_] := If[ FreeQ[ IntegerDigits[n, 3], 1], 1, 0]; Array[f, 111, 0] (* also from Mathematica v8.0 Mathematical Functions Help section for "IntegerDigits" "Cantor set construction:" *) (* Robert G. Wilson v, Jun 16 2011 *) Nest[Join[#, 0 #, #] &, {1}, 5] (* IWABUCHI Yu(u)ki, Sep 08 2012 *)
-
PARI
a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k))%3
-
PARI
A088917(n) = { while(n, if(n%3==1, return(0), n\=3)); (1); }; \\ Antti Karttunen, Aug 23 2019 (copied from A005823)
-
PARI
A088917(n) = abs(factorback(apply(d -> d-1,digits(n,3)))); \\ Antti Karttunen, Aug 23 2019
Formula
G.f.: Product_{k>=0} (1 + x^(2*3^k)). - Ilya Gutkovskiy, Jun 05 2021
Extensions
Secondary name added by Antti Karttunen, Aug 23 2019
Comments