cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A088925 Square table, read by antidiagonals, of coefficients T(n,k) of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x-y) + xy*f(x,y)^3.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 55, 55, 15, 1, 1, 21, 120, 212, 120, 21, 1, 1, 28, 231, 644, 644, 231, 28, 1, 1, 36, 406, 1652, 2617, 1652, 406, 36, 1, 1, 45, 666, 3738, 8685, 8685, 3738, 666, 45, 1, 1, 55, 1035, 7680, 24735, 36345, 24735, 7680
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2003

Keywords

Comments

The g.f. for A001764 satisfies: g(x) = 1 + x*g(x)^3.

Examples

			Rows begin:
{1, 1, 1, 1, 1, 1, 1, 1,..}
{1, 3, 6,10,15,21,28,..}
{1, 6,21,55,120,231,..}
{1,10,55,212,644,..}
{1,15,120,644,..}
{1,21,231,..}
		

Crossrefs

Cf. A088926 (diagonal), A088927 (antidiagonal sums), A086617, A001764.

Programs

  • Mathematica
    t[n_, k_] := Sum[ Binomial[n+k, 2*i]*Binomial[n+k-2*i, k-i]*(3*i)!/(i!*(2*i+1)!), {i, 0, k}]; Table[t[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 18 2013, after Michael Somos *)

Formula

T(n, k) = sum(i=0, k, C(n+k, 2i)*C(n+k-2i, k-i)*A001764(i) ), where A001764(i)=(3i)!/(i!(2i+1)!). - from Michael Somos