A089025 Side of primitive equilateral triangle bearing at least one integral cevian that partitions an edge into two integral sections.
8, 15, 21, 35, 40, 48, 55, 65, 77, 80, 91, 96, 99, 112, 117, 119, 133, 143, 153, 160, 168, 171, 176, 187, 207, 209, 221, 224, 225, 247, 253, 255, 264, 275, 280, 285, 299, 312, 319, 323, 325, 341, 345, 352, 360, 377, 391, 403, 408, 416, 425, 435, 437, 440, 448
Offset: 1
Keywords
Examples
The equilateral triangle with side 280, for instance, has cevian 247 partitioning an edge into 93+187, as well as cevian 271 that sections the edge into 19+261.
Links
- O. Delgado-Friedrichs and M. O'Keeffe, Edge-transitive lattice nets, Acta Cryst. A, A65 (2009), 360-363.
- Russell A. Gordon, Properties of Eisenstein Triples, Mathematics Magazine 85 (2012), 12-25.
Programs
-
Mathematica
findPrimIntEquiSide[maxC_] := Reap[Do[Do[ With[{cevian = Abs[c E^((2 \[Pi] I)/6) - a]}, If[FractionalPart[cevian] == 0 && GCD[a, c] == 1, Sow[c]; Break[]]], {a, Floor[c/2], 1, -1}], {c, maxC}]][[2, 1]] (* Andrew Turner, Aug 04 2017 *)
Comments