cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A088513 Smallest cevians corresponding to A089025(n).

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 91, 97, 103, 109, 127, 133, 133, 139, 157, 151, 169, 163, 193, 181, 199, 211, 217, 217, 223, 241, 229, 247, 247, 259, 259, 277, 301, 307, 283, 331, 301, 313, 343, 337, 349, 367, 397, 361, 373, 379, 403, 421, 403
Offset: 1

Views

Author

Lekraj Beedassy, Nov 14 2003

Keywords

Crossrefs

Cf. A089025.

Programs

  • Mathematica
    findPrimIntEquiCevian[maxC_] :=
    Reap[Do[Do[
         With[{cevian = Abs[c E^((2 \[Pi] I)/6) - a]},
          If[FractionalPart[cevian] == 0 && GCD[a, c] == 1,
           Sow[cevian]; Break[]]], {a, Floor[c/2],
          1, -1}], {c, maxC}]][[2, 1]]
    (* Andrew Turner, Aug 04 2017 *)

A088514 Smaller section of edge A089025(n) by integral cevian A088513(n).

Original entry on oeis.org

3, 7, 5, 11, 7, 13, 16, 9, 32, 17, 40, 11, 19, 55, 40, 24, 13, 23, 65, 69, 25, 56, 15, 75, 32, 104, 56, 29, 17, 87, 85, 31, 119, 72, 93, 64, 144, 95, 40, 35, 133, 21, 136, 105, 37, 105, 111, 88, 23, 185, 152, 176, 80, 41, 115
Offset: 1

Views

Author

Lekraj Beedassy, Nov 14 2003

Keywords

Comments

Obviously, larger section is A089025(n) - a(n).

Programs

  • Mathematica
    findPrimIntEquiSmallSection[maxC_] :=
    Reap[Do[Do[
         With[{cevian = Abs[c E^((2 \[Pi] I)/6) - a]},
          If[FractionalPart[cevian] == 0 && GCD[a, c] == 1,
           Sow[a]; Break[]]], {a, Floor[c/2],
          1, -1}], {c, maxC}]][[2, 1]]
    (* Andrew Turner, Aug 04 2017 *)

Formula

Larger section is A089025(n) - a(n) = A088586(n). a(n) = (A089025(n) - A088587(n))/2. - Lekraj Beedassy, Nov 25 2003

Extensions

a(7) changed from 18 to 16 by W. D. Smith, Mar 04 2012 (N. J. A. Sloane, Dec 05 2012)
a(42) changed from 105 to 21, and a(52)=176 inserted by Andrew Turner, Aug 04 2017

A088586 Larger section of edge A089025(n) by integral cevian A088513(n).

Original entry on oeis.org

5, 8, 16, 24, 33, 35, 39, 56, 45, 63, 51, 85, 80, 57, 77, 95, 120, 120, 88, 91, 143, 115, 161, 112, 175, 105, 165, 195, 208, 160, 168, 224, 145, 203, 187, 221, 155, 217, 279, 288, 192, 320, 209, 247, 323, 272, 280, 315, 385, 231, 273, 259, 357, 399, 333
Offset: 1

Views

Author

Lekraj Beedassy, Nov 20 2003

Keywords

Programs

  • Mathematica
    findPrimIntEquiLargeSection[maxC_] :=
    Reap[Do[Do[
         With[{cevian = Abs[c E^((2 \[Pi] I)/6) - a]},
          If[FractionalPart[cevian] == 0 && GCD[a, c] == 1,
           Sow[c - a]; Break[]]], {a, Floor[c/2],
          1, -1}], {c, maxC}]][[2, 1]]
    (* Andrew Turner, Aug 04 2017 *)

Formula

a(n) = (A089025(n) + A088587(n))/2. - Lekraj Beedassy, Nov 25 2003

Extensions

Repeated 112 at a(24) and a(25) removed, and order of a(35)=187 and a(36)=221 reversed by Andrew Turner, Aug 04 2017

A088587 Difference between the two segments of edge d = A089025(n) partitioned by cevian c = A088513(n).

Original entry on oeis.org

2, 1, 11, 13, 26, 22, 23, 47, 13, 46, 11, 74, 61, 2, 37, 71, 107, 97, 23, 22, 118, 59, 146, 37, 143, 1, 109, 166, 191, 73, 83, 193, 26, 131, 94, 157, 11, 122, 239, 253, 59, 299, 73, 142, 286, 167, 169, 227, 362, 46, 121, 83, 277, 358, 218
Offset: 1

Views

Author

Lekraj Beedassy, Nov 20 2003

Keywords

Comments

a(n) is minimal, i.e., equals 1 for values c = A001570(n), d = A028230(n).

Crossrefs

Cf. A088514.

Programs

  • Mathematica
    findPrimIntEquiSectionDiff[maxC_] :=
    Reap[Do[Do[
         With[{cevian = Abs[c E^((2 \[Pi] I)/6) - a]},
          If[FractionalPart[cevian] == 0 && GCD[a, c] == 1,
           Sow[c - 2 a]; Break[]]], {a, Floor[c/2],
          1, -1}], {c, maxC}]][[2, 1]]
    (* Andrew Turner, Aug 04 2017 *)

Formula

a(n) = sqrt(4c^2 - 3d^2).

Extensions

a(35)=94 and a(36)=157 order reversed by Andrew Turner, Aug 04 2017

A335896 Largest side of integer-sided primitive triangles whose angles A < B < C are in arithmetic order.

Original entry on oeis.org

8, 8, 15, 15, 21, 21, 35, 35, 40, 40, 48, 48, 55, 55, 65, 65, 77, 77, 80, 80, 91, 91, 96, 96, 99, 99, 112, 112, 117, 117, 119, 119, 133, 133, 143, 143, 153, 153, 160, 160, 171, 171, 168, 168, 187, 187, 176, 176, 209, 209, 207, 207, 221, 221, 224, 224, 225, 225
Offset: 1

Views

Author

Bernard Schott, Jul 10 2020

Keywords

Comments

The triples of sides (a,b,c) with a < b < c are in nondecreasing order of middle side, and if middle sides coincide then by increasing order of the largest side. This sequence lists the c's.
Equivalently, lengths of the largest side c of primitive non-equilateral triangles that have an angle of Pi/3; indeed, this side is opposite to the largest angle C.
Also, solutions c of the Diophantine equation b^2 = a^2 - a*c + c^2 with gcd(a,b) = 1 and a < b.
For the corresponding primitive triples and miscellaneous properties and references, see A335893.
When (a, b, c) is a triple, then (c-a, b, c) is another triple, so every c in the data is twice consecutively present according to the corresponding pair (b, c) (see examples).
As B = Pi/3 and C runs from Pi/3 to 2*Pi/3, sin(C) gets a maximum when C = Pi/2 with sin(C) = 1, hence, from law of sinus, b/sin(B) = c/sin(C), c < b/sin(Pi/3) = b * 2/sqrt(3) < 6*b/5. This bound is used in PARI and Maple programs.
This sequence is not increasing. For example, a(41) = a(42) = 171 for triangle with middle side = 151 while a(43) = a(44) = 168 for triangle with middle side = 157.

Examples

			c = 8 appears twice because:
  7^2 = 3^2 - 3*8 + 8^2, with triple (3, 7, 8),
  7^2 = 5^2 - 5*8 + 8^2, with triple (5, 7, 8).
c = 96 and c = 99 each appear twice associated with b = 91 because:
  91^2 = 11^2 - 11*96 + 96^2, with triple (11, 91, 96),
  91^2 = 85^2 - 85*96 + 96^2, with triple (85, 91, 96),
  91^2 = 19^2 - 19*99 + 99^2, with triple (19, 91, 99),
  91^2 = 80^2 - 80*99 + 99^2, with triple (80, 91, 99).
		

References

  • V. Lespinard & R. Pernet, Trigonométrie, Classe de Mathématiques élémentaires, programme 1962, problème B-298 p. 124, André Desvigne.

Crossrefs

Cf. A089025 (terms in increasing order without repetition).
Cf. A335893 (triples), A335894 (smallest side), A335895 (middle side), this sequence (largest side), A335897 (perimeter).

Programs

  • Maple
    for b from 3 to 250 by 2 do
    for c from b+1 to 6*b/5 do
    a := (c - sqrt(4*b^2-3*c^2))/2;
    if gcd(a,b)=1 and issqr(4*b^2-3*c^2) then print(c,c); end if;
    end do;
    end do;
  • PARI
    lista(nn) = {forstep(b=1, nn, 2, for(c=b+1, 6*b\5, if (issquare(d=4*b^2 - 3*c^2), my(a = (c - sqrtint(d))/2); if ((denominator(a)==1) && (gcd(a, b) == 1), print(c, ", ", c, ", ");););););} \\ Michel Marcus, Jul 15 2020

Formula

a(n) = A335893(n, 3).
c satisfies c^2 - a*c + a^2 - b^2 = 0 with gcd(a,b) = 1 and a < b.

A061281 Side of n-th equilateral triangle enclosing at least one point located at integer distances from the vertices.

Original entry on oeis.org

112, 147, 185, 224, 273, 283, 294, 331, 331, 336, 370, 403, 441, 448, 485, 520, 546, 555, 559, 560, 566, 588, 592, 637, 645, 662, 662, 672, 691, 735, 740, 784, 806, 819, 849, 882, 896, 925, 965, 970, 993, 993, 1008, 1029, 1040, 1047, 1092, 1110, 1118, 1120, 1132
Offset: 1

Views

Author

Lekraj Beedassy, May 21 2001

Keywords

Comments

The equation has many other integer solutions, such as {3,5,7,8}; most of these describe points that lie on the edge of the triangle. - David Wasserman, Jun 10 2002. See A089025.

Examples

			The solution (97,185,208,273) of the triangle equation gives rise to the value 273 as the 5th equilateral triangle associated with an interior point at integer distances from the vertices.
		

References

  • M. Gardner, Mathematical Circus, Alfred A. Knopf, 1979, p. 65.
  • L. Pianaro, Pierre Est Encore Perdu, Jouer Jeux Mathematiques, No. 18, Oct 1995, published by French Federation of Mathematics Games.

Crossrefs

Formula

a(n) is the largest term in the n-th quadruple (a, b, c, d) satisfying the triangle equation 3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.

Extensions

More terms from David Wasserman, Jun 10 2002
More terms from Jinyuan Wang, Jul 20 2020

A264826 Primitive Eisenstein triples: (a,b,c) in lexicographic order such that a^2 + b^2 - a*b - c^2 = 0, a < b < c, and gcd(a, b) = 1.

Original entry on oeis.org

3, 7, 8, 5, 7, 8, 5, 19, 21, 7, 13, 15, 7, 37, 40, 8, 13, 15, 9, 61, 65, 11, 31, 35, 11, 91, 96, 13, 43, 48, 13, 127, 133, 15, 169, 176, 16, 19, 21, 16, 49, 55, 17, 73, 80, 17, 217, 225, 19, 91, 99, 19, 271, 280, 21, 331, 341, 23, 133, 143, 23, 397, 408
Offset: 1

Views

Author

Colin Barker, Nov 26 2015

Keywords

Comments

The sides of a primitive 60-degree integer triangle.

Crossrefs

Programs

  • PARI
    pt60(a) = {
      my(L=List(), n=-3*a^2, f, g, b, c);
      fordiv(n, f,
        g=n\f;
        if(f>g && (g+f)%2==0 && (f-g)%4==0,
          b=(f-g)\4; c=((f+g)\2+a)\2;
          if(c>0 && a
    				

A229838 Consider all primitive 60-degree triangles with sides A < B < C. The sequence gives the values of A.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 21, 23, 24, 25, 27, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 45, 47, 48, 49, 51, 53, 55, 56, 57, 59, 61, 63, 64, 65, 67, 69, 71, 72, 73, 75, 77, 79, 80, 81, 83, 85, 87, 88, 89, 91, 93, 95, 96, 97, 99, 101, 103, 104, 105
Offset: 1

Author

Colin Barker, Oct 01 2013

Keywords

Comments

A primitive triangle is one for which the sides have no common factor.
A004611 gives the values of B, and A089025 gives the values of C.

Examples

			7 appears in the sequence because there exists a primitive 60-degree triangle with sides 7, 37 and 40.
		

Crossrefs

Programs

  • PARI
    \\ Gives terms not exceeding amax
    \\ e.g. pt60a(25) gives [3,5,7,8,9,11,13,15,16,17,19,21,23,24,25]
    pt60a(amax) = {
      s=[];
      for(m=1, amax\2,
        for(n=1, m-1,
          if((m-n)%3!=0 && gcd(m, n)==1,
            if(2*m*n+n*n<=amax, s=concat(s, 2*m*n+n*n));
            if(m*m-n*n<=amax, s=concat(s, m*m-n*n))
          )
        )
      );
      vecsort(s,,8)
    }

Formula

Empirical g.f.: -x*(x^5-x^4-x^3-2*x^2-2*x-3) / ((x-1)^2*(x^4+x^3+x^2+x+1)).

A242039 List of integers b such that (a1,b,c1) and (a2,b,c2) are primitive Eisenstein triples, max(a1,b,c1,a2,c2)=b, and a1,c1,a3,c3 are distinct.

Original entry on oeis.org

280, 1144, 1155, 1680, 1768, 1976, 2145, 2584, 2805, 3003, 3128, 3315, 3360, 3400, 3496, 3705, 3800, 4095, 4600, 4845, 5005, 5280, 5336, 5355, 5704, 5720, 5800, 5865, 5985, 6160, 6200, 6240, 6545, 6555, 6783, 6864, 7192, 7280, 7315, 7400, 7735, 8120, 8265, 8584, 8645, 8680, 8835, 8855, 9176, 9177, 9240, 9360, 9512, 9976
Offset: 1

Author

Albert Lau, Aug 12 2014

Keywords

Comments

For Eisenstein triple see A121992.

Examples

			280 is in the list because (93,280,247) and (19,280,271) are primitive Eisenstein triples and 280 is the largest side and no other side is equal.
Consider (3,8,7) and (5,8,7), 8 is not in the list because 7 appear in both triple.
		

Crossrefs

Programs

  • Mathematica
    max = 2000;
    data = Do[Sqrt[-3 a^2 + 4 c^2] // If[IntegerQ[#] && GCD[a, c] == 1, {a, (a + #)/2, c} // Sow] &, {a, max}, {c, Sqrt[3]/2 a // Ceiling, a - 1}] // Reap // Last // Last;
    Select[data[[;; , 1]] // Tally, #[[2]] > 1 &][[;; , 1]]

A291420 Numbers n such that there exist exactly four distinct Pythagorean triangles, at least one of them primitive, with area n.

Original entry on oeis.org

341880, 8168160, 14636160, 17957940, 52492440, 116396280, 1071572040, 1187525640, 1728483120, 5988702720, 6609482880, 22539095040, 29239970760, 136496680320, 258670630680, 398648544840, 494892478080, 592003418160, 1329673884000, 1343798407560, 2190884461920
Offset: 1

Author

Sture Sjöstedt, Aug 23 2017

Keywords

Comments

Numbers n such that there exist positive integers x, y with x > y and n = x*y*(x-y)*(x+y).
Many of them consist of a Pythagorean triangle plus a triple which is a solution to Carroll's problem: Find three Pythagorean triangles with the same area.

Examples

			p^2 - p*q + q^2 = r^2;
p = 208, q = 418, r = 362, q - p = 210;
n = p*r*q*(q-p) = 208*418*362*210 = 6609482880.
x = 640, y = 627 gives the same area:
n = x*y*(x-y)*(x+y) = 640*627*13*1267 = 6609482880.
		

Extensions

a(12)-a(21) from Giovanni Resta, Aug 28 2017
Showing 1-10 of 10 results.