A089076 Expansion of -x - x^3*(2 -2*x^4 +x^5)/((1-x^2)*(1+x+x^4)).
-1, 0, -2, 2, -4, 4, -6, 7, -11, 14, -20, 26, -37, 50, -70, 95, -132, 181, -251, 345, -477, 657, -908, 1252, -1729, 2385, -3293, 4544, -6273, 8657, -11950, 16493, -22766, 31422, -43372, 59864, -82630, 114051, -157423, 217286, -299916, 413966, -571389, 788674, -1088590, 1502555, -2073944, 2862617
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,1,1,1,0,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( -x -x^3*(2-2*x^4+x^5)/((1-x^2)*(1+x-x^4)) )); // G. C. Greubel, Feb 19 2021 -
Mathematica
Rest@CoefficientList[Series[-x -x^3*(2-2*x^4+x^5)/((1-x^2)*(1+x-x^4)), {x,0,50}], x] (* G. C. Greubel, Feb 19 2021 *) LinearRecurrence[{-1,1,1,1,0,-1},{-1,0,-2,2,-4,4,-6,7},50] (* Harvey P. Dale, Aug 11 2021 *)
-
Sage
def A089076_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( -x -x^3*(2-2*x^4+x^5)/((1-x^2)*(1+x-x^4)) ).list() a=A089076_list(51); a[1:] # G. C. Greubel, Feb 19 2021
Formula
G.f.: -x - x^3*(2 -2*x^4 +x^5)/((1-x^2)*(1+x+x^4)).
Extensions
Edited by G. C. Greubel, Feb 19 2021