cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089074 Expansion of x*(1 + x + x^2)/(1 - 2*x + x^5).

Original entry on oeis.org

0, 1, 3, 7, 14, 28, 55, 107, 207, 400, 772, 1489, 2871, 5535, 10670, 20568, 39647, 76423, 147311, 283952, 547336, 1055025, 2033627, 3919943, 7555934, 14564532, 28074039, 54114451, 104308959, 201061984, 387559436, 747044833, 1439975215
Offset: 0

Views

Author

Roger L. Bagula, Dec 04 2003

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( x*(1+x+x^2)/(1-2*x+x^5) )); // G. C. Greubel, Feb 19 2021
  • Mathematica
    CoefficientList[Series[x*(1+x+x^2)/(1-2*x+x^5), {x, 0, 50}], x] (* G. C. Greubel, Feb 19 2021 *)
  • Sage
    def A089074_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+x+x^2)/(1-2*x+x^5) ).list()
    a=A089074_list(51); a[1:] # G. C. Greubel, Feb 19 2021
    

Formula

From N. J. A. Sloane, Dec 05 2003: (Start)
G.f.: x*(1+x+x^2)/(1-2*x+x^5).
a(n) = 2*a(n-1) - a(n-5) for n >= 6. (End)
a(n) = A000078(n+4) - 1. - G. C. Greubel, Feb 19 2021

Extensions

Title and offset changed by G. C. Greubel, Feb 19 2021

A089075 A nonsense sequence.

Original entry on oeis.org

-1, 1, -1, 2, -2, 4, -4, 7, -7, 12, -12, 22, -21, 39, -39, 68, -70, 119, -127, 210, -229, 369, -413, 649, -742, 1143, -1334, 2017, -2393, 3561, -4289, 6293, -7680, 11129, -13739, 19696, -24559, 34879, -43871, 61801, -78324, 109555, -139764, 194291, -249295, 344694, -444496, 611723, -792285
Offset: 1

Views

Author

Roger L. Bagula, Dec 04 2003

Keywords

Crossrefs

Programs

  • Mathematica
    (* k is a root of x^4 - x^3 - 1: *)
    k=1.38027756909761411567330169182273187781662670155876302541177133121124957411;
    q=k^2-k-1/k-1/k^2;
    m0={{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 1, 1, q}};
    m[n_]=MatrixPower[m0, n];
    Table[Floor[Re[m[n][[4, 4]]]], {n, 1, 1000}]

Extensions

Edited by G. C. Greubel, Feb 19 2021

A089076 Expansion of -x - x^3*(2 -2*x^4 +x^5)/((1-x^2)*(1+x+x^4)).

Original entry on oeis.org

-1, 0, -2, 2, -4, 4, -6, 7, -11, 14, -20, 26, -37, 50, -70, 95, -132, 181, -251, 345, -477, 657, -908, 1252, -1729, 2385, -3293, 4544, -6273, 8657, -11950, 16493, -22766, 31422, -43372, 59864, -82630, 114051, -157423, 217286, -299916, 413966, -571389, 788674, -1088590, 1502555, -2073944, 2862617
Offset: 1

Views

Author

Roger L. Bagula, Dec 04 2003

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    Coefficients(R!( -x -x^3*(2-2*x^4+x^5)/((1-x^2)*(1+x-x^4)) )); // G. C. Greubel, Feb 19 2021
  • Mathematica
    Rest@CoefficientList[Series[-x -x^3*(2-2*x^4+x^5)/((1-x^2)*(1+x-x^4)), {x,0,50}], x] (* G. C. Greubel, Feb 19 2021 *)
    LinearRecurrence[{-1,1,1,1,0,-1},{-1,0,-2,2,-4,4,-6,7},50] (* Harvey P. Dale, Aug 11 2021 *)
  • Sage
    def A089076_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -x -x^3*(2-2*x^4+x^5)/((1-x^2)*(1+x-x^4)) ).list()
    a=A089076_list(51); a[1:] # G. C. Greubel, Feb 19 2021
    

Formula

G.f.: -x - x^3*(2 -2*x^4 +x^5)/((1-x^2)*(1+x+x^4)).

Extensions

Edited by G. C. Greubel, Feb 19 2021
Showing 1-3 of 3 results.