cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089194 Primes p such that p-1 and p+1 are cube- or higher power-free.

Original entry on oeis.org

2, 3, 5, 11, 13, 19, 29, 37, 43, 59, 61, 67, 83, 101, 131, 139, 149, 157, 173, 179, 181, 197, 211, 227, 229, 277, 283, 293, 307, 317, 331, 347, 349, 373, 389, 397, 419, 421, 443, 461, 467, 491, 509, 523, 547, 557, 563, 571, 587, 613, 619, 643, 653, 659, 661
Offset: 1

Views

Author

Cino Hilliard, Dec 08 2003

Keywords

Comments

A212793(a(n) - 1) = A212793(a(n) + 1) = 1. - Reinhard Zumkeller, May 27 2012

Examples

			43 is included because 43 - 1 = 2 * 3 * 7 and 43 + 1 = 2^2 * 11 are both cubefree.
71 is omitted because the p+1 side, 72 = 2^3 * 3^2, has a cube factor.
		

Crossrefs

Cf. A004709. Subsequence of A089189.

Programs

  • Haskell
    a089194 n = a089194_list !! (n-1)
    a089194_list = filter ((== 1) . a212793 . (+ 1)) a097375_list
    -- Reinhard Zumkeller, May 27 2012
  • Maple
    isA089194 := proc(n)
        if isprime(n) then
            isA004709(n-1) and isA004709(n+1) ;
        else
            false;
        end if;
    end proc: # R. J. Mathar, Dec 08 2015
  • Mathematica
    f[n_]:=Module[{a=m=0},Do[If[FactorInteger[n][[m,2]]>2,a=1],{m,Length[FactorInteger[n]]}];a]; lst={};Do[p=Prime[n];If[f[p-1]==0&&f[p+1]==0,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 15 2009 *)
    p3fQ[n_]:=Max[Transpose[FactorInteger[n]][[2]]]<3; Select[Prime[Range[ 200]], AllTrue[#+{1,-1},p3fQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 08 2015 *)
  • PARI
    \\ input number of iterations n, power p and the number to subtract k.
    powerfreep2(n,p,d) = { c=0; pc=0; forprime(x=2,n, pc++; if(ispowerfree(x-d,p) && ispowerfree(x+d,p), c++; print1(x","); ) ); print(); print(c","pc","c/pc+.0) }
    ispowerfree(m,p1) = { flag=1; y=component(factor(m),2); for(i=1,length(y), if(y[i] >= p1,flag=0;break); ); return(flag) }
    

Formula

{p in A000040: p+1 in A004709 and p-1 in A004709}. - R. J. Mathar, Dec 08 2015