cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089233 Number of coprime pairs of divisors > 1 of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 6, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 6, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 11, 0, 1, 2, 0, 1, 6, 0, 2, 1, 6, 0, 6, 0, 1, 2, 2, 1, 6, 0, 4, 0, 1, 0, 11, 1, 1, 1, 3, 0, 11, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 6, 0, 3, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 11 2003

Keywords

Comments

Also the number of divisors of n^2 which do not divide n and which are less than n. See link for proof. - Andrew Weimholt, Dec 06 2009
a(A000961(n)) = 0; a(A006881(n)) = 1; a(A054753(n)) = 2; a(A065036(n)) = 3. - Robert G. Wilson v, Dec 16 2009
First occurrence of k beginning with 0: 1, 6, 12, 24, 36, 96, 30, 384, 144, 216, 288, 60, 432, 24576, 1152, 864, 120, 393216, 1728, 1572864, 180, 240, 18432, 25165824, 5184, 210, 480, 13824, 10368, 360, 15552, 960, 20736, 55296, 1179648, 31104, 900, ..., . Except for 1, each is divisible by 6. Also the first occurrence of k must occur at or before 6*2^(n-1). - Robert G. Wilson v, Dec 16 2009
a(3*2^n) = n; if x = 2^n, then a(x) = a(2*x); and if x is not a power of two, then a(x) = y then a(2*x) > y. - Robert G. Wilson v, Dec 16 2009
a(n) = 0 iff n is a prime power. - Franklin T. Adams-Watters, Aug 20 2013

Programs

  • Haskell
    a089233 n = sum $ [a063524 $ gcd u v | let ds = tail $ a027750_row n,
                                           u <- ds, v <- dropWhile (<= u) ds]
    -- Reinhard Zumkeller, Sep 04 2013
    
  • Magma
    [(NumberOfDivisors(n^2)-1)/2 - NumberOfDivisors(n)+1: n in [1..100]]; // Vincenzo Librandi, Dec 23 2018
  • Mathematica
    a[n_] := (DivisorSigma[0, n^2] - 1)/2 - DivisorSigma[0, n] + 1; Array[a, 104] (* Robert G. Wilson v, Dec 16 2009 *)
  • PARI
    a(n) = (numdiv(n^2)-1)/2 - numdiv(n) + 1; \\ Michel Marcus, Feb 17 2016
    

Formula

a(n) = #{(x,y): 1 < x < y, x|n, y|n and gcd(x, y) = 1}.
a(n) = A063647(n) - A000005(n) + 1.
a(n) = A018892(n) - A000005(n). - Franklin T. Adams-Watters, Aug 20 2013