A089270 Positive numbers represented by the integer binary quadratic form x^2 + x*y - y^2 with x and y relatively prime.
1, 5, 11, 19, 29, 31, 41, 55, 59, 61, 71, 79, 89, 95, 101, 109, 121, 131, 139, 145, 149, 151, 155, 179, 181, 191, 199, 205, 209, 211, 229, 239, 241, 251, 269, 271, 281, 295, 305, 311, 319, 331, 341, 349, 355, 359, 361, 379, 389, 395, 401, 409, 419, 421, 431
Offset: 1
Keywords
Examples
n=2: a(2)=5 with, for example, (x,y)= (2,1): 4+2-1=5 (there are infinitely many proper (x,y) solutions). n=8: a(8)=55 with, for example, (x,y)=(7,6) or (7,1). In this case there exist two fundamental proper solutions.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000, matches Jagy's program output (_R. J. Mathar_, Sep 10 2016)
- Alfred Brousseau, On the ordering of Fibonacci sequences, Fib. Quart. 1.4 (1963), 43-46; Errata, Fib. Quart. 2.1 (1964), 38.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- Norbert Hungerbühler and Maciej Smela, Geometric approach to the Diophantine equation x^2 + x*y - y^2 = m, hal-04835410, 2024. See p. 18.
- Wolfdieter Lang, Fibonacci sequences with relative prime initial conditions, and the binary quadratic form [1, 1, -1]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Maple
F:= proc(n) local x,y; for y from 1 to floor(8*sqrt(n)) do x := (-y+sqrt(5*y^2+4*n))/2; if x::integer and igcd(x,y) = 1 then return true fi; od: false end proc: select(F, [$1..1000]); # Robert Israel, Oct 01 2015
-
Mathematica
Reap[For[n = 1, n < 1000, n++, r = Reduce[x^2 + x y - y^2 == n, {x, y}, Integers]; If[r =!= False, If[AnyTrue[{x, y} /. {ToRules[r /. C[1] -> 0]}, CoprimeQ @@ # &], Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
-
PARI
for (k=1, 431, if(#qfbsolve(Qfb(1,1,-1),factor(k),1), print1(k,", "))) \\ Hugo Pfoertner, Sep 09 2022
Formula
a(n) = x^2 + x*y - y^2 with relatively prime integers x and y (proper solutions of the Diophantine equation).
Extensions
Minor edits by Matthew Staller, Jun 05 2019
Comments