A324598 Irregular triangle with the representative solutions of the Diophantine equation x^2 + x - 1 congruent to 0 modulo N(n), with N(n) = A089270(n), for n >= 1.
0, 2, 3, 7, 4, 14, 5, 23, 12, 18, 6, 34, 7, 47, 25, 33, 17, 43, 8, 62, 29, 49, 9, 79, 42, 52, 22, 78, 10, 98, 36, 84, 11, 119, 63, 75, 52, 93, 40, 108, 27, 123, 12, 142, 74, 104, 13, 167, 88, 102, 61, 137, 47, 157, 14, 194, 80, 128, 32, 178
Offset: 1
Examples
The irregular triangle T(n, k) begins (pairs (x, N - 1 - x) in brackets): n, N \ k 1 2 3 4 ... ---------------------------------- 1, 1: 0 2, 5: 2 3, 11: (3 7) 4, 19: (4 14) 5, 29: (5 23) 6, 31: (12 18) 7, 41: (6 34) 8, 55: (7 47) 9, 59: (25 33) 10, 61: (17 43) 11, 71: (8 62) 12, 79: (29 49) 13, 89: (9 79) 14, 95: (42 52) 15, 101: (22 78) 16, 109: (10 98) 17, 121: (36 84) 18, 131: (11 119) 19, 139: (63 75) 20, 145: (52 93) .... 29, 209: (14 194) (80 128) ... 41, 319: (139 179) (150 168) ... 43, 341: (18 322) (80 260) ... 59, 451: (47 403) (157 293) ...
Comments