cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089271 Third column (k=4) of array A078739(n,k) ((2,2)-generalized Stirling2).

Original entry on oeis.org

1, 38, 652, 9080, 116656, 1446368, 17636032, 213311360, 2569812736, 30898216448, 371141389312, 4455873443840, 53483541999616, 641880868118528, 7703040602324992, 92439308337643520, 1109288626710839296
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2003

Keywords

Comments

The numerator of the g.f. is the n=2 row polynomial of the triangle A089275.

Crossrefs

Cf. A089272, A071951 (Legendre-Stirling triangle).

Programs

  • Magma
    [6*12^n-6*6^n+2^n: n in [0..20]]; // Vincenzo Librandi, Sep 02 2011
    
  • Mathematica
    Table[6*12^n -6*6^n +2^n, {n,0,30}] (* G. C. Greubel, Feb 07 2018 *)
    LinearRecurrence[{20,-108,144},{1,38,652},20] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    for(n=0,30, print1(6*12^n -6*6^n +2^n, ", ")) \\ G. C. Greubel, Feb 07 2018

Formula

G.f.: (1+18*x)/((1-2*1*x)*(1-3*2*x)*(1-4*3*x)).
a(n) = 6*12^n - 6*6^n + 2^n = d(n) + 18*d(n-1), n>=1, a(0)=1, with d(n) := A016309(n) = A071951(n+3, 3) = (24*12^n-15*6^n+2^n)/10.