cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089281 Smallest prime factor of floor(Pi*10^n).

Original entry on oeis.org

3, 31, 2, 3, 5, 314159, 2, 2, 3, 3, 5, 2, 13, 163, 43, 13, 2, 317213509, 2, 2, 2, 2, 2, 2, 83, 41, 2, 3, 2, 3, 3, 5, 2, 2, 2, 2, 2, 31415926535897932384626433832795028841, 13, 59, 3, 2, 3, 3, 3, 3, 3, 31, 3, 1657, 2, 3, 2, 2, 2, 29, 13, 2, 3, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2003

Keywords

Examples

			n = 10: floor(Pi*10^10) = 31415926535 = 5*7*31*28954771: a(10) = 5.
		

Crossrefs

Cf. A078604, A000796 (decimals of Pi), A020639 (smallest prime fector), A011545 (numbers made from inital digits of Pi), A060421 (1 + indices of primes in this sequence).

Programs

  • Mathematica
    a[n_] := FactorInteger[IntegerPart[Pi*10^n]][[1, 1]];
    Table[a[n], {n, 0, 59}]  (* Peter Luschny, Mar 15 2024 *)
  • PARI
    a(n) = factor(floor(Pi*10^n))[1, 1]; \\ Michel Marcus, Dec 28 2013
    
  • PARI
    A089281(n)={localprec(n+3); factor(Pi\10^-n)[1, 1]} \\ M. F. Hasler, Mar 15 2024

Formula

a(n) = A020639(A011545(n)).
a(n) is prime (<=> in A000040) iff n+1 is in A060421. - M. F. Hasler, Mar 15 2024

Extensions

More terms from Ray Chandler, Oct 30 2003
More terms from Ryan Moore, Dec 27 2013