cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A011545 a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.

Original entry on oeis.org

3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
Offset: 0

Views

Author

Keywords

Comments

Number of collisions occurring in a system consisting of an infinitely massive, rigid wall at the origin, a ball with mass m stationary at position x1 > 0, and a ball with mass (10^2n)m at position x2 > x1 and rolling toward the origin, assuming perfectly elastic collisions and no friction. - Richard Holmes, Jun 17 2021
Wolfgang Haken (1977) conjectured that no term of this sequence is a perfect square, and estimated the probability that this conjecture is false to be smaller than 10^-9. - Paolo Xausa, Jul 15 2023

References

  • Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.

Crossrefs

Programs

  • Mathematica
    s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}]
    (* Or: *)
    a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
  • PARI
    A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024

Formula

a(n) = floor(Pi*10^n).

Extensions

Definition corrected by M. F. Hasler, Mar 15 2024

A046974 Partial sums of digits of decimal expansion of Pi.

Original entry on oeis.org

3, 4, 8, 9, 14, 23, 25, 31, 36, 39, 44, 52, 61, 68, 77, 80, 82, 85, 93, 97, 103, 105, 111, 115, 118, 121, 129, 132, 134, 141, 150, 155, 155, 157, 165, 173, 177, 178, 187, 194, 195, 201, 210, 213, 222, 231, 234, 241, 246, 247, 247, 252, 260, 262
Offset: 0

Views

Author

Keywords

Comments

a(n) = A007953(A011545(n)). - Reinhard Zumkeller, Oct 30 2003
The partial sums to 10^k, k>=0: 4, 44, 480, 4479, 44897, 449336, 4499937, 45002885, 449989731, .... - Robert G. Wilson v, Sep 16 2007
If the sequence were to start with an initial term a(0) = 0, its first differences would reproduce the complete sequence of digits of Pi. - M. F. Hasler, Jan 19 2015

Crossrefs

Programs

  • Mathematica
    Rest@ FoldList[ Plus, 0, First@ RealDigits[Pi, 10, 58]] (* Robert G. Wilson v, Sep 16 2007 *)
    Accumulate[RealDigits[Pi,10,60][[1]]] (* Harvey P. Dale, Mar 11 2013 *)
Showing 1-2 of 2 results.