cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A011545 a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.

Original entry on oeis.org

3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
Offset: 0

Views

Author

Keywords

Comments

Number of collisions occurring in a system consisting of an infinitely massive, rigid wall at the origin, a ball with mass m stationary at position x1 > 0, and a ball with mass (10^2n)m at position x2 > x1 and rolling toward the origin, assuming perfectly elastic collisions and no friction. - Richard Holmes, Jun 17 2021
Wolfgang Haken (1977) conjectured that no term of this sequence is a perfect square, and estimated the probability that this conjecture is false to be smaller than 10^-9. - Paolo Xausa, Jul 15 2023

References

  • Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.

Crossrefs

Programs

  • Mathematica
    s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}]
    (* Or: *)
    a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
  • PARI
    A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024

Formula

a(n) = floor(Pi*10^n).

Extensions

Definition corrected by M. F. Hasler, Mar 15 2024

A019676 Decimal expansion of Pi/9.

Original entry on oeis.org

3, 4, 9, 0, 6, 5, 8, 5, 0, 3, 9, 8, 8, 6, 5, 9, 1, 5, 3, 8, 4, 7, 3, 8, 1, 5, 3, 6, 9, 7, 7, 2, 2, 5, 4, 2, 6, 8, 8, 5, 7, 4, 3, 7, 7, 7, 0, 8, 3, 4, 5, 0, 9, 1, 2, 1, 9, 4, 3, 8, 2, 8, 8, 0, 3, 4, 2, 0, 1, 8, 2, 2, 9, 2, 0, 6, 8, 9, 8, 8, 8, 7, 3, 6, 4, 4, 8, 3, 1, 3, 9, 2, 6, 9, 0, 1, 8, 9, 6
Offset: 0

Views

Author

Keywords

Comments

Overlapping interpretation of A046974, as in where numbers are put in a decimal digit place and overlapping digits are added. - Eliora Ben-Gurion, Dec 22 2019

Examples

			0.349065850398865915384738153697722542688574377708345091219438288034201... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

Crossrefs

Cf. A000796 (Pi).

Programs

Formula

Equals Sum_{k>=0} A046974(k)/10^(k+1) = 3/10 + 4/100 + 8/10^3 + 9/10^4 + 14/10^5 + 23/10^6 + ... - Eliora Ben-Gurion, Dec 22 2019
Equals Integral_{x=0..oo} x^(7/2)/(1 + x^9) dx. - Amiram Eldar, Aug 12 2020

A099534 a(n)=Sum of the first n decimal places of e.

Original entry on oeis.org

7, 8, 16, 18, 26, 27, 35, 37, 45, 49, 54, 63, 63, 67, 72, 74, 77, 82, 85, 91, 91, 93, 101, 108, 112, 119, 120, 123, 128, 130, 136, 142, 144, 148, 157, 164, 171, 176, 183, 185, 189, 196, 196, 205, 208, 214, 223, 232, 241, 246, 255, 260, 267, 271, 280, 286, 292
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004

Keywords

Examples

			Decimal places of e are: 718281828459045... so the sums are: 7, 7+1, 7+1+8,
7+1+8+2,... = 7,8,16,18,...
		

Crossrefs

Cf. A046975 for version of this sequence including the initial 2 of e. A039918 and A046974 for analogous sequences for Pi.

Formula

a(n)=A046975(n+1)-2

A074850 Partial products of successive digits in the decimal expansion of Pi.

Original entry on oeis.org

3, 3, 12, 12, 60, 540, 1080, 6480, 32400, 97200, 486000, 3888000, 34992000, 244944000, 2204496000, 6613488000, 13226976000, 39680928000, 317447424000, 1269789696000, 7618738176000, 15237476352000, 91424858112000
Offset: 1

Views

Author

Zak Seidov, Sep 10 2002

Keywords

Comments

Because 33rd digit in the decimal expansion of Pi, pi(33) = 0, all a(n>32) = 0.
Partial sums of digits of the decimal expansion of Pi are in A046974.

Examples

			a(3)=12 because pi(1)=3, pi(1)=1, pi(3)=4 and a(3)=3*1*4=12.
		

Crossrefs

Programs

  • Mathematica
    ppi={3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8}; Table[Product[ppi[[i]], {i, n}], {n, 1, 33}]
    Rest[FoldList[Times,1,RealDigits[Pi,10,30][[1]]]] (* Harvey P. Dale, Jan 23 2015 *)

Formula

a(n) = pi(1)*...*pi(n); pi(n)=A000796(n).
a(n) = A073055(n), n>0. - R. J. Mathar, Dec 15 2020

A089290 Digital root of floor(Pi*10^n), Pi=3.14....

Original entry on oeis.org

3, 4, 8, 9, 5, 5, 7, 4, 9, 3, 8, 7, 7, 5, 5, 8, 1, 4, 3, 7, 4, 6, 3, 7, 1, 4, 3, 6, 8, 6, 6, 2, 2, 4, 3, 2, 6, 7, 7, 5, 6, 3, 3, 6, 6, 6, 9, 7, 3, 4, 4, 9, 8, 1, 1, 1, 8, 3, 3, 7, 2, 7, 7, 9, 3, 3, 1, 9, 1, 7, 2, 2, 8, 1, 9, 6, 8, 8, 7, 7, 7, 6, 3, 5, 4, 4, 7
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 30 2003

Keywords

Examples

			n=10: floor(Pi*10^n) = 31415926535 -> 3 + 1 + 4 + 1 + 5 + 9 + 2 + 6 + 5 + 3 + 5 = 44 -> 4 + 4 = 8, so a(10)=8.
		

Crossrefs

Programs

  • Maple
    A089290 := proc(n) Digits:=n+20: return ((floor(Pi*10^n)-1) mod 9) + 1: end: seq(A089290(n),n=0..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Table[ Mod[ Floor[ Pi*10^n], 9], {n, 0, 104}] /. 0 -> 9 (* Robert G. Wilson v, Oct 31 2003 *)

Formula

a(n) = A010888(A011545(n)).

Extensions

More terms from Ray Chandler and Robert G. Wilson v, Oct 31 2003

A099536 Sum of the first n digits of Zeta(3) (Apery's constant), including the initial 1.

Original entry on oeis.org

1, 3, 3, 5, 5, 10, 16, 25, 25, 28, 29, 34, 43, 48, 57, 61, 63, 71, 76, 79, 88, 97, 104, 107, 115, 116, 122, 123, 128, 129, 130, 134, 138, 147, 156, 165, 165, 172, 178, 182, 191, 199, 205, 207, 216, 218, 221, 225, 225, 229, 238, 246, 254, 262, 263, 270, 279, 281
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004

Keywords

Examples

			Zeta(3)=1.20205690... so sequence begins 1, 1+2, 1+2+0, 1+2+0+2, 1+2+0+2+0,
1+2+0+2+0+5,... which gives 1, 3, 3, 5, 5, 10, ...
		

Crossrefs

Analogous sequences for other constants: A096535 (log 2), A099534 and A046975 (e), A039918 and A046974 (Pi).
Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023

Programs

  • Mathematica
    Accumulate[RealDigits[Zeta[3],10,120][[1]]] (* Harvey P. Dale, Jan 18 2012 *)

A076787 Pisumprimes: prime(k), where k is the sum of the first n digits of Pi.

Original entry on oeis.org

5, 7, 19, 23, 43, 83, 97, 127, 151, 167, 193, 239, 283, 337, 389, 409, 421, 439, 487, 509, 563, 571, 607, 631, 647, 661, 727, 743, 757, 811, 863, 907, 907, 919, 977, 1031, 1051, 1061, 1117, 1181
Offset: 1

Views

Author

Cino Hilliard, Nov 16 2002

Keywords

Comments

The sum of the reciprocals of this sequence diverges; it grows as log log n, just as the sum of the reciprocals of the primes does. - Franklin T. Adams-Watters, Mar 30 2006

Programs

  • Mathematica
    Prime[#]&/@Accumulate[RealDigits[Pi,10,40][[1]]] (* Harvey P. Dale, Sep 30 2012 *)
  • PARI
    \\ pi digit sum index primes; pisump.gp Primes whose index is the sequential sum of digits of pi
    { pisump(n) = default(realprecision, 100000); p = Pi/10; default(realprecision,28); sr=0; s=0; for(x=1, n, d = p*10; d1=floor(d); s+=d1; p = frac(d); d = p*10; p2=prime(s); sr+=1/p2+0.; print1(p2, ", "); ); print(" "); print(sr); }

Formula

The digits of Pi are added d_1+d_2..d_i and the prime whose index is the i-th sum is chosen. E.g. for Pi = 3.14149265358979... the first Pisumprime is prime (3) the second is prime(4), 3rd prime(8) etc. Let d_1, d_2, ..d_i be the expansion of the decimal digits of Pi. Then Pisumprime(n) = prime(d_1), prime (d_1+d_2), ...prime(sum(d_i, i=1..n)). This can be generalized to pisumprime(n, z) where z is the nesting level of prime(x). for z=1 we have prime() for z=2 we have prime (prime(x)), z=3 prime(prime(prime(x))) etc.
a(n)=A000040(A046974(n)) - Franklin T. Adams-Watters, Mar 30 2006

Extensions

Edited by T. D. Noe, Jun 24 2009

A099535 Sum of the first n decimal places of log(2).

Original entry on oeis.org

6, 15, 18, 19, 23, 30, 31, 39, 39, 44, 49, 58, 67, 71, 76, 79, 79, 88, 92, 93, 100, 102, 105, 107, 108, 110, 111, 115, 120, 128, 129, 136, 142, 147, 153, 161, 161, 168, 173, 178, 178, 178, 179, 182, 186, 189, 195, 195, 197, 202, 207, 209, 214, 218, 219, 221, 221
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004

Keywords

Examples

			log(2) decimals = 693147180559945... so the sums are 6, 6+9, 6+9+3, 6+9+3+1,... which are 6, 15, 18, 19, ...
		

Crossrefs

Cf. A039918 and A046974 for Pi, A046975 and A099534 for e.

Programs

  • Mathematica
    Accumulate[RealDigits[Log[2],10,100][[1]]]  (* Harvey P. Dale, Mar 23 2011 *)

A099538 Sum of the first n digits of sqrt(2), including the initial "1".

Original entry on oeis.org

1, 5, 6, 10, 12, 13, 16, 21, 27, 29, 32, 39, 42, 42, 51, 56, 56, 60, 68, 76, 76, 77, 83, 91, 99, 106, 108, 112, 114, 114, 123, 129, 138, 146, 146, 153, 161, 166, 172, 181, 187, 194, 195, 203, 210, 215, 218, 225, 231, 240, 244, 252, 252, 259, 262, 263, 270, 276, 282
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004

Keywords

Examples

			sqrt(2)=1.41421356237... so the sums are 1, 1+4, 1+4+1, 1+4+1+4, 1+4+1+4+2,...
which gives 1, 5, 6, 10, 12,...
		

Crossrefs

Cf. A002193 for digits of sqrt(2). Other sequences like this one for other constants: A099534-A099537, A039918, A046974, A046975.

Programs

  • Mathematica
    Accumulate[RealDigits[Sqrt[2],10,60][[1]]] (* Harvey P. Dale, May 30 2012 *)

A099539 Sum of the first n decimal places of sqrt(2).

Original entry on oeis.org

4, 5, 9, 11, 12, 15, 20, 26, 28, 31, 38, 41, 41, 50, 55, 55, 59, 67, 75, 75, 76, 82, 90, 98, 105, 107, 111, 113, 113, 122, 128, 137, 145, 145, 152, 160, 165, 171, 180, 186, 193, 194, 202, 209, 214, 217, 224, 230, 239, 243, 251, 251, 258, 261, 262, 269, 275, 281
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Oct 22 2004

Keywords

Comments

Cf. A099538 for a version of this sequence resulting from including all digits of sqrt(2) and not just the digits after the decimal point.

Examples

			Decimal places of sqrt(2) are 41421356237... so sums are 4, 4+1, 4+1+4, 4+1+4+2,... which gives 4, 5, 9, 11, ...
		

Crossrefs

Cf. A099538 and A099534, A099535, A099536, A099537, A039918, A046974, A046975 for analogous sequences based on other constants.

Programs

  • Mathematica
    Accumulate[Rest[RealDigits[N[Sqrt[2],70]][[1]]]] (* Harvey P. Dale, Dec 12 2010 *)

Formula

a(n) = A099538(n+1) - 1.
Showing 1-10 of 18 results. Next