cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A073010 Decimal expansion of Pi/sqrt(27).

Original entry on oeis.org

6, 0, 4, 5, 9, 9, 7, 8, 8, 0, 7, 8, 0, 7, 2, 6, 1, 6, 8, 6, 4, 6, 9, 2, 7, 5, 2, 5, 4, 7, 3, 8, 5, 2, 4, 4, 0, 9, 4, 6, 8, 8, 7, 4, 9, 3, 6, 4, 2, 4, 6, 8, 5, 8, 5, 2, 3, 2, 9, 4, 9, 7, 8, 4, 6, 2, 7, 0, 7, 7, 2, 7, 0, 4, 2, 1, 1, 7, 9, 6, 1, 2, 2, 8, 0, 4, 1, 6, 6, 2, 7, 3, 7, 3, 5, 3, 3, 8, 9, 6, 1, 8, 7, 4, 0
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Original name: Decimal expansion of Sum_{n>0} 1/(n*binomial(2*n,n)).
This appears to be Pi/sqrt(27). See A111510. - Marco Matosic, Feb 27 2008
This is Pi*sqrt(3)/9 = A019676*A002194, see eq. (12) in Lehmer link. - R. J. Mathar, Mar 04 2009
Value of the Dirichlet L-series of the non-principal character modulo m=3 (A102283) at s=1. - R. J. Mathar, Oct 03 2011
Construct the largest possible circle inside a given equilateral triangle. This constant is the ratio of the area of the circle to the area of the triangle (A245670 is analogous square in triangle). - Rick L. Shepherd, Jul 29 2014

Examples

			0.60459978807807261686469275254738524409468...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (81), page 16.

Crossrefs

Programs

  • Magma
    R:=RealField(106); SetDefaultRealField(R); n:=Pi(R)/Sqrt(27); Reverse(Intseq(Floor(10^105*n))); // Bruno Berselli, Mar 12 2018
  • Mathematica
    RealDigits[ N [Sum[1/(n*Binomial[2n, n]), {n, 1, Infinity}], 110]] [[1]]
    RealDigits[Pi/(3*Sqrt[3]), 10, 105][[1]] (* T. D. Noe, Sep 11 2013 *)
  • PARI
    Pi/sqrt(27) \\ Charles R Greathouse IV, Sep 11 2013
    

Formula

-Pi/(3*sqrt(3)) = Sum_{n>=0} (1/(6*n+1) - 2/(6*n+2) - 3/(6*n+3) - 1/(6*n+4) + 2/(6*n+5) + 3/(6*n+6)). - Mats Granvik, Sep 08 2013
Equals Integral_{0..oo} 2*x/((x^2+1)*(x^4+x^2+1)) dx. - Jean-François Alcover, Sep 10 2013
From Peter Bala, Feb 16 2015: (Start)
Pi/sqrt(27) = Sum_{n >= 0} 1/((3*n + 1)*(3*n + 2)) = 1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ....
Continued fraction: 1/(1 + 1^2/(1 + 2^2/(2 + 4^2/(1 + 5^2/(2 + ... + (3*n + 1)^2/(1 + (3*n + 2)^2/(2 + ... ))))))).
Pi/sqrt(27) = Integral_{t = 0..1/2} 1/(t^2 - t + 1) dt = Integral_{t = 0..1/2} (1 + t - t^3 - t^4)/(1 - t^6) dt.
Pi/sqrt(27) = (1/4)*Sum_{n >= 0} (-1/8)^n * (9*n + 5)/((3*n + 1)*(3*n + 2)).
BBP-type formulas:
Pi/sqrt(27) = Sum_{n >= 0} (1/64)^(n+1)*( 32/(6*n + 1) + 16/(6*n + 2) - 4/(6*n + 4) - 2/(6*n + 5) ) follows from the above integral representation.
Pi/sqrt(27) = Sum_{n >= 0} (-1)^n*(1/27)^(n+1)*( 9/(6*n + 1) + 9/(6*n + 2) + 6/(6*n + 3) + 3/(6*n + 4) + 1/(6*n + 5) ) follows from the result: Pi/3 = Integral_{t = 0..1/sqrt(3)} 1/(1 - sqrt(3)*t + t^2) dt. (End)
Equals Integral_{x=0..oo} x*I_0(x)*K_0(x)^2 dx over a triple product of modified Bessel functions. - R. J. Mathar, Oct 14 2015
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(exp(x) + exp(-x) + 1) dx.
Equals Integral_{x=0..oo} 1/(1 + x + x^2 + x^3 + x^4 + x^5) dx. (End)
Equals (3*S - 4)/8, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Product_{p prime} (1 - Kronecker(-3, p)/p)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p)^(-1). - Amiram Eldar, Nov 06 2023
From Peter Bala, Dec 09 2023: (Start)
Pi/sqrt(27) = Sum_{n >= 1} 1/(n*binomial(2*n,n)) = (1/6)*Sum_{n >= 1} 3^n/(n*binomial(2*n,n)) (see Lehmer, equation 12, and also p. 456).
Pi/sqrt(27) = (1/2)*Sum_{n >= 0} 1/((2*n + 1)*binomial(2*n,n)).
Pi/sqrt(27) = (9/4)*Sum_{n >= 3} (n - 1)*(n - 2)/binomial(2*n,n). (End)
Equals integral_{x=0..oo} 1/(1-x^3) dx [Nahin]. - R. J. Mathar, May 16 2024
From Peter Bala, Mar 05 2025: (Start)
Equals 2*Integral_{x = 0..1} 1/(3 + x^2) dx = Integral_{x = 0..1} (4 - x)/(sqrt(x)*(12 + x*(1 - x))) dx.
Equals Sum_{n >= 1} (-1/3)^n * (3 - 14*n)/(n*(2*n-1)*binomial(4*n, 2*n)). The series terms are O(7*sqrt(2*Pi/n)/48^n). (End)
Equals Integral_{x=0..oo} (x^3)/(x^6 + 1) dx. - Kritsada Moomuang, Jun 04 2025

A056020 Numbers that are congruent to +-1 mod 9.

Original entry on oeis.org

1, 8, 10, 17, 19, 26, 28, 35, 37, 44, 46, 53, 55, 62, 64, 71, 73, 80, 82, 89, 91, 98, 100, 107, 109, 116, 118, 125, 127, 134, 136, 143, 145, 152, 154, 161, 163, 170, 172, 179, 181, 188, 190, 197, 199, 206, 208, 215, 217, 224, 226, 233, 235, 242, 244, 251, 253
Offset: 1

Views

Author

Robert G. Wilson v, Jun 08 2000

Keywords

Comments

Or, numbers k such that k^2 == 1 (mod 9).
Or, numbers k such that the iterative cycle j -> sum of digits of j^2 when started at k contains a 1. E.g., 8 -> 6+4 = 10 -> 1+0+0 = 1 and 17 -> 2+8+9 = 19 -> 3+6+1 = 10 -> 1+0+0 = 1. - Asher Auel, May 17 2001

Crossrefs

Cf. A007953, A047522 (n=1 or 7 mod 8), A090771 (n=1 or 9 mod 10).
Cf. A129805 (primes), A195042 (partial sums).
Cf. A381319 (general case mod n^2).

Programs

  • Haskell
    a056020 n = a056020_list !! (n-1)
    a05602_list = 1 : 8 : map (+ 9) a056020_list
    -- Reinhard Zumkeller, Jan 07 2012
  • Mathematica
    Select[ Range[ 300 ], PowerMod[ #, 2, 3^2 ]==1& ]
    (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 8, 10}, 67] (* Mike Sheppard, Feb 18 2025 *)
  • PARI
    a(n)=9*(n>>1)+if(n%2,1,-1) \\ Charles R Greathouse IV, Jun 29 2011
    
  • PARI
    for(n=1,40,print1(9*n-8,", ",9*n-1,", ")) \\ Charles R Greathouse IV, Jun 29 2011
    

Formula

a(1) = 1; a(n) = 9(n-1) - a(n-1). - Rolf Pleisch, Jan 31 2008 [Offset corrected by Jon E. Schoenfield, Dec 22 2008]
From R. J. Mathar, Feb 10 2008: (Start)
O.g.f.: 1 + 5/(4(x+1)) + 27/(4(-1+x)) + 9/(2(-1+x)^2).
a(n+1) - a(n) = A010697(n). (End)
a(n) = (9*A132355(n) + 1)^(1/2). - Gary Detlefs, Feb 22 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = a(n-2) + 9, for n > 2.
a(n) = 9*A000217(n-1) + 1 - 2*Sum_{i=1..n-1} a(i), n > 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/9)*cot(Pi/9) = A019676 * A019968. - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((18*x - 9)*exp(x) + 5*exp(-x))/4. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/9) (A332437).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/9)*cosec(Pi/9). (End)
From Mike Sheppard, Feb 18 2025: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) ~ (3^2/2)*n. (End)

A256853 Decimal expansion of the area of a unit 9-gon.

Original entry on oeis.org

6, 1, 8, 1, 8, 2, 4, 1, 9, 3, 7, 7, 2, 9, 0, 0, 1, 2, 7, 2, 1, 3, 7, 4, 4, 0, 5, 9, 6, 1, 9, 7, 6, 3, 6, 1, 4, 9, 4, 1, 7, 1, 3, 3, 4, 8, 1, 3, 4, 3, 5, 8, 0, 9, 8, 3, 8, 6, 8, 6, 4, 2, 5, 5, 6, 6, 9, 7, 7, 1, 0, 7, 1, 2, 3, 3, 5, 8, 4, 6, 6, 4, 7, 6, 6, 3, 5, 9, 5, 5, 3, 3, 8, 9, 0, 7, 9, 1, 8, 4, 0, 9, 9, 0, 2
Offset: 1

Views

Author

Stanislav Sykora, Apr 12 2015

Keywords

Comments

From Michal Paulovic, May 09 2024: (Start)
This constant multiplied by the square of the side length of a regular enneagon equals the area of that enneagon.
9^2 divided by this constant equals 36 * tan(Pi/9) = 13.10292843... which is the perimeter and the area of an equable enneagon with its side length 4 * tan(Pi/9) = 1.45588093... . (End)

Examples

			6.181824193772900127213744059619763614941713348134358098386864...
		

Crossrefs

Cf. A000796, A019669, A019670, A019673, A019676, A019685, A019968, A120011 (p=3), A102771 (p=5), A104956 (p=6), A178817 (p=7), A090488 (p=8), A178816 (p=10), A256854 (p=11), A178809 (p=12).

Programs

  • Maple
    evalf(9 / (4 * tan(Pi/9)), 100); # Michal Paulovic, May 09 2024
  • Mathematica
    RealDigits[(9/4)*Cot[Pi/9], 10, 50][[1]] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    p=9; a=(p/4)*cotan(Pi/p)        \\ Use realprecision in excess

Formula

Equals (p/4)*cot(Pi/p), with p = 9.
From Michal Paulovic, May 09 2024: (Start)
Equals 9 * sqrt(2 / (1 - sin(5 * A000796 / 18)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019669 / 9)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019670 / 6)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019673 / 3)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * A019676 / 2)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(50 * A019685)) - 1) / 4.
Equals 9 * sqrt(2 / (1 - sin(5 * Pi / 18)) - 1) / 4.
Equals 9 * sqrt(4 / (2 - i^(4/9) - i^(-4/9)) - 1) / 4.
Equals 9 * sqrt(1 / (8 - (-32 + sqrt(-3072))^(1/3) - (-32 - sqrt(-3072))^(1/3)) - 1/16). (End)
Largest of the 6 real-valued roots of 4096*x^6 -186624*x^4 +1154736*x^2 -177147 =0. - R. J. Mathar, Aug 29 2025

A353410 a(n) = (tan(1*Pi/9))^(2*n) + (tan(2*Pi/9))^(2*n) + (tan(3*Pi/9))^(2*n) + (tan(4*Pi/9))^(2*n).

Original entry on oeis.org

4, 36, 1044, 33300, 1070244, 34420356, 1107069876, 35607151476, 1145248326468, 36835122753252, 1184744167077204, 38105444942929620, 1225602095970073572, 39419576386043222340, 1267869080483029127412, 40779027899804602385460, 1311593714249667915837060, 42185362424185765127267748
Offset: 0

Views

Author

Bernard Schott, Apr 17 2022

Keywords

Comments

Sum_{k=1..(m-1)/2} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is for the case m = 9.
Note tan(3*Pi/9) = tan(Pi/3) = sqrt(3).

Examples

			a(1) = tan^2 (Pi/9) + tan^2 (2*Pi/9) + tan^2 (3*Pi/9) + tan^2 (4*Pi/9) = 36.
		

Crossrefs

Similar with: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), this sequence (m=9), A275546 (m=11), A353411 (m=13).
Cf. A019676 (Pi/9), A019918 (tan(Pi/9)), A019938 (tan(2*Pi/9)).
Cf. A215948.

Programs

  • Mathematica
    LinearRecurrence[{36, -126, 84, -9}, {4, 36, 1044, 33300}, 18] (* Amiram Eldar, Apr 18 2022 *)

Formula

G.f.: 4*(1 - 27x + 63*x^2 - 21*x^3)/((1 - 3*x)*(1 - 33*x + 27*x^2 - 3*x^3)). - Stefano Spezia, Apr 18 2022
a(n) = A215948(n) + 3^n. - Jianing Song, Apr 19 2022

Extensions

More terms from Stefano Spezia, Apr 18 2022

A019696 Decimal expansion of 2*Pi/9.

Original entry on oeis.org

6, 9, 8, 1, 3, 1, 7, 0, 0, 7, 9, 7, 7, 3, 1, 8, 3, 0, 7, 6, 9, 4, 7, 6, 3, 0, 7, 3, 9, 5, 4, 4, 5, 0, 8, 5, 3, 7, 7, 1, 4, 8, 7, 5, 5, 4, 1, 6, 6, 9, 0, 1, 8, 2, 4, 3, 8, 8, 7, 6, 5, 7, 6, 0, 6, 8, 4, 0, 3, 6, 4, 5, 8, 4, 1, 3, 7, 9, 7, 7, 7, 4, 7, 2, 8, 9, 6, 6, 2, 7, 8, 5, 3, 8, 0, 3, 7, 9, 2
Offset: 0

Views

Author

Keywords

Comments

The area of a deltoid formed by rolling a circle with radius 1/3 inside a unit-radius circle. - Amiram Eldar, Nov 16 2021
Volume shared by a sphere of radius 1 inscribed in a cube and one of the six pyramids inscribed in the cube. - Omar E. Pol, Sep 01 2024

Examples

			0.69813170079773183076947630739544508537714875541669...
		

Crossrefs

Equals twice A019676.

Programs

A019705 Decimal expansion of sqrt(Pi)/3.

Original entry on oeis.org

5, 9, 0, 8, 1, 7, 9, 5, 0, 3, 0, 1, 8, 3, 8, 6, 7, 5, 7, 6, 6, 0, 5, 5, 8, 2, 7, 7, 8, 0, 3, 8, 1, 7, 2, 7, 5, 9, 9, 1, 8, 3, 1, 5, 2, 0, 4, 0, 7, 9, 5, 7, 0, 9, 4, 0, 4, 6, 0, 2, 5, 9, 6, 6, 1, 7, 6, 3, 7, 0, 9, 4, 8, 6, 3, 6, 7, 7, 3, 9, 3, 7, 9, 1, 6, 5, 0, 2, 1, 8, 9, 1, 2, 8, 4, 8, 2, 2, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

Equals sqrt(A019676). - Michel Marcus, Aug 31 2014
Equals 10 * Sum_{k>=0} (k+1/2)!/(k+4)!. - Amiram Eldar, Jun 19 2023
Showing 1-6 of 6 results.