A089333 Number of partitions into a square number of parts.
1, 1, 1, 1, 2, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 51, 63, 80, 99, 124, 153, 190, 233, 288, 353, 432, 527, 643, 780, 947, 1145, 1383, 1665, 2002, 2399, 2874, 3431, 4090, 4865, 5779, 6847, 8103, 9568, 11283, 13280, 15610, 18313, 21462, 25108, 29337, 34227
Offset: 0
Examples
a(7)=4 because we have [7], [4,1,1,1], [3,2,1,1] and [2,2,2,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
g:=sum(x^(k^2)/product(1-x^i,i=1..k^2),k=1..7): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 04 2006 # second Maple program: b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0 or i=1, 1, `if`(i<1, 0, b(n, i-1)+ `if`(i>n, 0, b(n-i, i))))) end: a:= n-> add(b(n-i^2, i^2), i=0..isqrt(n)): seq(a(n), n=0..60); # Alois P. Heinz, Sep 24 2015
-
Mathematica
b[n_, i_] := b[n, i] = If[n < 0, 0, If[n == 0 || i == 1, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]]; a[n_] := Sum[b[n - i^2, i^2], {i, 0, Sqrt[n]}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz*)
Formula
G.f.: Sum(x^(n^2)/Product(1-x^i, i = 1 .. n^2), n = 1 .. infinity).
Extensions
a(0)=1 from Alois P. Heinz, Sep 24 2015
Comments