cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089333 Number of partitions into a square number of parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 8, 11, 14, 19, 24, 31, 39, 51, 63, 80, 99, 124, 153, 190, 233, 288, 353, 432, 527, 643, 780, 947, 1145, 1383, 1665, 2002, 2399, 2874, 3431, 4090, 4865, 5779, 6847, 8103, 9568, 11283, 13280, 15610, 18313, 21462, 25108, 29337, 34227
Offset: 0

Views

Author

Vladeta Jovovic, Dec 25 2003

Keywords

Comments

Also number of partitions of n such that the largest part is a square. Example: a(7)=4 because we have [4,3], [4,2,1], [4,1,1,1] and [1,1,1,1,1,1,1]. - Emeric Deutsch, Apr 04 2006

Examples

			a(7)=4 because we have [7], [4,1,1,1], [3,2,1,1] and [2,2,2,1].
		

Programs

  • Maple
    g:=sum(x^(k^2)/product(1-x^i,i=1..k^2),k=1..7): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 04 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n<0, 0,
          `if`(n=0 or i=1, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i)))))
        end:
    a:= n-> add(b(n-i^2, i^2), i=0..isqrt(n)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 24 2015
  • Mathematica
    b[n_, i_] := b[n, i] = If[n < 0, 0, If[n == 0 || i == 1, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]]; a[n_] := Sum[b[n - i^2, i^2], {i, 0, Sqrt[n]}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz*)

Formula

G.f.: Sum(x^(n^2)/Product(1-x^i, i = 1 .. n^2), n = 1 .. infinity).

Extensions

a(0)=1 from Alois P. Heinz, Sep 24 2015