cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A103198 Number of compositions of n into a square number of parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 166, 331, 716, 1574, 3368, 6892, 13447, 25127, 45391, 80428, 142615, 259085, 491855, 982400, 2045001, 4352661, 9291361, 19609786, 40574017, 81973315, 161568281, 311062991, 586764281, 1089615033, 2005257849, 3688711427
Offset: 0

Views

Author

Vladeta Jovovic, Mar 18 2005

Keywords

Comments

From Gus Wiseman, Jan 17 2019: (Start)
Also the number of ways to fill a square matrix with the parts of an integer partition of n. For example, the a(6) = 11 matrices are:
[6]
.
[1 1] [1 1] [1 3] [3 1] [1 1] [1 2] [1 2] [2 1] [2 1] [2 2]
[1 3] [3 1] [1 1] [1 1] [2 2] [1 2] [2 1] [1 2] [2 1] [1 1]
(End)

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0,
          `if`(issqr(t), 1, 0), add(b(n-j, t+1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 18 2019
  • Mathematica
    nmax = 40; Rest[CoefficientList[Series[-1/2 + EllipticTheta[3, 0, x/(1-x)]/2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 03 2017 *)

Formula

a(n) = Sum_{k>=0} (x/(1-x))^(k^2).
Binomial transform of the characteristic function of squares A010052, with 0th term omitted. - Carl Najafi, Sep 09 2011
a(n) = Sum_{k >= 0} binomial(n-1,k^2-1). - Gus Wiseman, Jan 17 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 18 2019

A339445 Number of partitions of n into squares such that the number of parts is a square.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 2, 3, 1, 2, 2, 2, 2, 2, 2, 3, 5, 2, 4, 6, 1, 4, 6, 3, 7, 6, 4, 10, 6, 4, 10, 9, 6, 11, 10, 8, 10, 10, 11, 14, 16, 11, 15, 19, 10, 17, 22, 13, 24, 23, 16, 28, 21, 18, 33, 30, 24, 33, 33, 29, 33, 37, 33, 43, 45, 35, 49
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2020

Keywords

Examples

			                                    [1 1 1]
                          [1 4]     [1 1 1]
a(23) = 2 because we have [9 9] and [4 4 9].
		

Crossrefs

Programs

  • Maple
    g:= proc(n, k, m)
      # number of partitions of n into k parts which are squares > m^2
       option remember; local r;
      if k = 0 then if n = 0 then return 1 else return 0 fi fi;
      if n < k*(m+1)^2 then return 0 fi;
      add(procname(n-r*(m+1)^2, k-r, m+1), r =max(0, ceil((k*(m+2)^2-n)/(2*m+3))) .. k)
    end proc:
    f:= proc(n) local k; add(g(n,k^2,0),k=1..floor(sqrt(n))) end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Oct 26 2023

A357354 Number of partitions of n into distinct positive squares such that the number of parts is a square.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 0, 2, 0, 0, 1, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2022

Keywords

Examples

			a(30) = 1 because we have [16,9,4,1].
a(78) = 3: [36,25,16,1], [49,16,9,4], [64,9,4,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
         `if`(issqr(t), 1, 0), `if`(n>i*(i+1)*(2*i+1)/6, 0,
         `if`(i^2>n, 0, b(n-i^2, i-1, t+1))+b(n, i-1, t)))
        end:
    a:= n-> b(n, isqrt(n), 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 25 2022
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
       If[IntegerQ @ Sqrt[t], 1, 0], If[n > i*(i+1)*(2*i+1)/6, 0,
       If[i^2 > n, 0, b[n-i^2, i-1, t+1]] + b[n, i-1, t]]];
    a[n_] := b[n, Floor @ Sqrt[n], 0];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 24 2025, after Alois P. Heinz *)

A286141 Number of partitions of n into a squarefree number of parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 30, 40, 53, 70, 92, 120, 154, 199, 254, 324, 409, 517, 648, 811, 1008, 1253, 1549, 1911, 2347, 2880, 3519, 4294, 5219, 6338, 7671, 9273, 11173, 13451, 16147, 19359, 23151, 27656, 32958, 39231, 46594, 55276, 65444, 77391, 91341, 107689, 126734
Offset: 0

Views

Author

Ilya Gutkovskiy, May 07 2017

Keywords

Comments

Also number of partitions of n such that the largest part is a squarefree (A005117).

Examples

			a(6) = 9 because we have [6], [5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1], [2, 2, 2], [2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1] (partitions into a squarefree number of parts).
Also a(6) = 9 because we have [6], [5, 1], [3, 3], [3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 2, 1, 1], [2, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1] (partitions such that the largest part is a squarefree).
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Length@Select[IntegerPartitions@n, SquareFreeQ@Length@# &], {n, 50}]]
    nmax = 50; CoefficientList[Series[1 + Sum[MoebiusMu[i]^2 x^i/Product[1 - x^j, {j, 1, i}], {i, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: 1 + Sum_{i>=1} x^A005117(i) / Product_{j=1..A005117(i)} (1 - x^j).

A334626 G.f.: Sum_{k>=0} x^(k^3) / Product_{j=1..k^3} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 16, 23, 30, 41, 53, 71, 90, 117, 147, 187, 231, 289, 354, 436, 528, 642, 770, 927, 1102, 1313, 1550, 1832, 2147, 2519, 2935, 3421, 3964, 4594, 5298, 6110, 7016, 8055, 9216, 10542, 12021, 13706, 15588, 17724, 20111
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2020

Keywords

Comments

Number of partitions of n such that the number of parts is a cube.
Also number of partitions of n such that the largest part is a cube.

Examples

			a(10) = 3 because we have [10], [3, 1, 1, 1, 1, 1, 1, 1] and [2, 2, 1, 1, 1, 1, 1, 1] (see the first comment) or [8, 2], [8, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (see the second comment).
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[Sum[x^(k^3)/Product[1 - x^j, {j, 1, k^3}], {k, 0, Floor[nmax^(1/3)] + 1}], {x, 0, nmax}], x]

A339235 G.f.: Sum_{k>=0} x^(k^4) / Product_{j=1..k^4} (1 - x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 8, 12, 16, 23, 31, 43, 57, 78, 102, 136, 177, 232, 297, 384, 487, 621, 781, 984, 1226, 1531, 1892, 2340, 2872, 3524, 4294, 5232, 6335, 7666, 9229, 11099, 13288, 15893, 18929, 22519, 26695, 31604, 37293
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 05 2020

Keywords

Comments

Number of partitions of n such that the number of parts is a fourth power.
Also number of partitions of n such that the largest part is a fourth power.

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[x^(k^4)/Product[1 - x^j, {j, 1, k^4}], {k, 0, Floor[nmax^(1/4)] + 1}], {x, 0, nmax}], x]

Formula

a(18) = 3 because we have [18], [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] and [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (see the first comment) or[16, 2], [16, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] (see the second comment).
Showing 1-6 of 6 results.