cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089353 Triangle read by rows: T(n,m) = number of planar partitions of n with trace m.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 6, 2, 1, 5, 10, 6, 2, 1, 6, 19, 14, 6, 2, 1, 7, 28, 28, 14, 6, 2, 1, 8, 44, 52, 33, 14, 6, 2, 1, 9, 60, 93, 64, 33, 14, 6, 2, 1, 10, 85, 152, 127, 70, 33, 14, 6, 2, 1, 11, 110, 242, 228, 142, 70, 33, 14, 6, 2, 1, 12, 146, 370, 404, 272, 149, 70, 33, 14, 6, 2, 1, 13
Offset: 1

Views

Author

Wouter Meeussen and Vladeta Jovovic, Dec 26 2003

Keywords

Comments

Also number of partitions of n objects of 2 colors into k parts, each part containing at least one black object.

Examples

			The triangle T(n,m) begins:
  n\m  1   2   3   4   5   6  7  8  9 10 11 12 ...
  1:   1
  2:   2   1
  3:   3   2   1
  4:   4   6   2   1
  5:   5  10   6   2   1
  6:   6  19  14   6   2   1
  7:   7  28  28  14   6   2  1
  8:   8  44  52  33  14   6  2  1
  9:   9  60  93  64  33  14  6  2  1
  10: 10  85 152 127  70  33 14  6  2  1
  11: 11 110 242 228 142  70 33 14  6  2  1
  12: 12 146 370 404 272 149 70 33 14  6  2  1
  ... reformatted, _Wolfdieter Lang_, Mar 09 2015
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (Ch. 11, Example 5 and Ch. 12, Example 5).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Vol. 2, 1999; p. 365 and Exercise 7.99, p. 484 and pp. 548-549.

Crossrefs

Cf. A000219 (row sums), A005380, A005993 (trace 2), A050531 (trace 3), A089351 (trace 4).

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*
           binomial(i+j-1, j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[i + j - 1, j], {j, 0, n/i}]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 1, Exponent[#, x]}]& @ b[n, n];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} 1/(1-q*x^k)^k (with offset n=0 in x powers).
T(n+m, m) = A005380(n), n >= 1, for all m >= n. T(m, m) = 1 for m >= 1. See the Stanley reference Exercise 7.99. With offset n=0 a column for m=0 with the only non-vanishing entry T(0, 0) = 1 could be added. - Wolfdieter Lang, Mar 09 2015

Extensions

Edited by Christian G. Bower, Jan 08 2004