A089523 Primes p such that mu(p+1) = 1; that is, p+1 is squarefree and has an even number of distinct prime factors, where mu is the Moebius function.
5, 13, 37, 61, 73, 157, 193, 277, 313, 389, 397, 421, 457, 461, 509, 541, 569, 613, 661, 673, 733, 757, 769, 797, 857, 877, 929, 997, 1093, 1109, 1153, 1201, 1213, 1217, 1229, 1237, 1289, 1301, 1321, 1381, 1409, 1429, 1453, 1481, 1553, 1609, 1621, 1657
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Moebius Function
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(2000) | MoebiusMu(p+1) eq 1]; // Vincenzo Librandi, Aug 17 2018
-
Maple
select(n -> isprime(n) and numtheory:-mobius(n+1)=1, [seq(i,i=1..2000,4)]); # Robert Israel, Aug 16 2018
-
Mathematica
Select[Prime[Range[300]], MoebiusMu[ #+1]==1&]
-
PARI
isok(p) = isprime(p) && (moebius(p+1) == 1); \\ Michel Marcus, Aug 16 2018