cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089608 a(n) = ((-1)^(n+1)*A002425(n)) modulo 6.

Original entry on oeis.org

1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1
Offset: 1

Views

Author

Benoit Cloitre, Dec 30 2003

Keywords

Comments

Let S(1)={1} and S(n+1)=S(n)S'(n) where S'(n) is obtained from S(n) by changing last term using the cyclic permutation 1->5->1, then sequence is S(infinity).

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[IntegerExponent[n, 2], 2] * 4 + 1; Array[a, 100] (* Amiram Eldar, Nov 28 2022 *)
  • PARI
    a(n)=numerator(2/n*(4^n-1)*bernfrac(2*n))%6
    
  • PARI
    a(n)=valuation(n,2)%2 * 4 + 1; \\ Andrew Howroyd, Aug 01 2018
    
  • Scheme
    (define (A035263 n) (let loop ((n n) (i 1)) (cond ((odd? n) (modulo i 2)) (else (loop (/ n 2) (+ 1 i))))))
    (define (A089608 n) (- 5 (* 4 (A035263 n))))
    ;; Antti Karttunen, Sep 11 2017

Formula

a(n) = 5 - 4*A035263(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7/3. - Amiram Eldar, Nov 28 2022
From Amiram Eldar, Jan 04 2023: (Start)
Multiplicative with a(2^e) = 5 if e is odd, and 1 if e is even, a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(2^s+5)/(2^s+1). (End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 01 2018