A089608 a(n) = ((-1)^(n+1)*A002425(n)) modulo 6.
1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1, 5, 1, 1, 1, 5, 1, 5, 1
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Mod[IntegerExponent[n, 2], 2] * 4 + 1; Array[a, 100] (* Amiram Eldar, Nov 28 2022 *)
-
PARI
a(n)=numerator(2/n*(4^n-1)*bernfrac(2*n))%6
-
PARI
a(n)=valuation(n,2)%2 * 4 + 1; \\ Andrew Howroyd, Aug 01 2018
-
Scheme
(define (A035263 n) (let loop ((n n) (i 1)) (cond ((odd? n) (modulo i 2)) (else (loop (/ n 2) (+ 1 i)))))) (define (A089608 n) (- 5 (* 4 (A035263 n)))) ;; Antti Karttunen, Sep 11 2017
Formula
a(n) = 5 - 4*A035263(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7/3. - Amiram Eldar, Nov 28 2022
From Amiram Eldar, Jan 04 2023: (Start)
Multiplicative with a(2^e) = 5 if e is odd, and 1 if e is even, a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(2^s+5)/(2^s+1). (End)
Extensions
Keyword:mult added by Andrew Howroyd, Aug 01 2018
Comments