A089644 Numbers k such that 7 divides the numerator of B(2*k) where B(k) = the k-th Bernoulli number.
7, 14, 28, 35, 49, 56, 70, 77, 91, 98, 112, 119, 133, 140, 154, 161, 175, 182, 196, 203, 217, 224, 238, 245, 259, 266, 280, 287, 301, 308, 322, 329, 343, 350, 364, 371, 385, 392, 406, 413, 427, 434, 448, 455, 469, 476, 490, 497, 511, 518, 532, 539, 553, 560
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[500], Divisible[Numerator @ BernoulliB[2*#], 7] &] (* Amiram Eldar, May 17 2021 *)
-
PARI
isok(n) = ! ((numerator(bernfrac(2*n))) % 7); \\ Michel Marcus, Dec 06 2013
Formula
a(n) = 7*A001651(n).
a(n) = 21*(n-1)-a(n-1), with n>1, a(1)=7. - Vincenzo Librandi, Nov 16 2010