cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A089660 a(n) = S1(n,3), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).

Original entry on oeis.org

0, 2, 35, 276, 1522, 6820, 26664, 94640, 312512, 975744, 2913280, 8386048, 23416320, 63724544, 169637888, 443043840, 1137934336, 2879979520, 7194083328, 17761304576, 43390730240, 104997322752, 251881062400, 599482433536, 1416470986752, 3324615065600
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S1(n, t): A001792 (t=0), A089658 (t=1), A089659 (t=2), this sequence (t=3), A089661 (t=4), A089662 (t=5), A089663 (t=6).

Programs

  • Magma
    [2^(n-6)*n*(3*n*(7+10*n+5*n^2) -2): n in [0..40]]; // G. C. Greubel, May 24 2022
    
  • Mathematica
    LinearRecurrence[{10,-40,80,-80,32}, {0,2,35,276,1522}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
  • SageMath
    [n*(15*n^3+30*n^2+21*n-2)*2^(n-6) for n in (0..40)] # G. C. Greubel, May 24 2022

Formula

a(n) = n*(15*n^3 + 30*n^2 + 21*n - 2)*2^(n-6). - R. J. Mathar, Sep 16 2009
G.f.: x*(2 + 15*x + 6*x^2 + 2*x^3)/(1-2*x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = 10*a(n-1) - 40*a(n-2) + 80*a(n-3) - 80*a(n-4) + 32*a(n-5) for n > 4. - Chai Wah Wu, Jun 21 2016
E.g.f.: x*(8 + 54*x + 60*x^2 + 15*x^3)*exp(2*x)/4. - Ilya Gutkovskiy, Jun 21 2016